

What readers are saying about
CoffeeScript: Accelerated JavaScript Development

It’s hard to imagine a new web application today that doesn’t make heavy use of
JavaScript, but if you’re used to something like Ruby, it feels like a significant
step down to deal with JavaScript, more of a chore than a joy. Enter CoffeeScript:
a pre-compiler that removes all the unnecessary verbosity of JavaScript and
simply makes it a pleasure to write and read. Go, go, Coffee! This book is a great
introduction to the world of CoffeeScript.

➤ David Heinemeier Hansson
Creator, Rails

Just like CoffeeScript itself, Trevor gets straight to the point and shows you the
benefits of CoffeeScript and how to write concise, clear CoffeeScript code.

➤ Scott Leberknight
Chief Architect, Near Infinity

Though CoffeeScript is a new language, you can already find it almost everywhere.
This book will show you just how powerful and fun CoffeeScript can be.

➤ Stan Angeloff
Managing Director, PSP WebTech Bulgaria

This book helps readers become better JavaScripters in the process of learning
CoffeeScript. What’s more, it’s a blast to read, especially if you are new to Coffee-
Script and ready to learn.

➤ Brendan Eich
Creator, JavaScript

CoffeeScript may turn out to be one of the great innovations in web application
development; since I first discovered it, I’ve never had to write a line of pure
JavaScript. I hope the readers of this wonderful book will be able to say the same.

➤ Dr. Nic Williams
CEO/Founder, Mocra

CoffeeScript: Accelerated JavaScript Development is an excellent guide to Coffee-
Script from one of the community’s most esteemed members. It’ll help you get up
to speed with the language in no time, whether you write code that runs in the
browser or on the server. Trevor’s book belongs on every CoffeeScript developer’s
shelf.

➤ Sam Stephenson
Creator, Prototype JavaScript framework

CoffeeScript is one of the most interesting developments in the world of program-
ming languages in the last few years. Taking the lessons learned over the last
decade from languages like Ruby and Python, it is a language with immense ex-
pressive power. CoffeeScript: Accelerated JavaScript Development is your guide to
this new language and a must-read for those interested in being productive in
JavaScript.

➤ Travis Swicegood
Author, Pragmatic Version Control Using Git

Trevor serves up a rich blend of language overview and real-world examples,
showcasing why I consider CoffeeScript my secret weapon for iOS, Android, and
WebOS mobile development.

➤ Wynn Netherland
Co-host, The Changelog

Fasten your seat belt and enjoy the ride with Trevor Burnham from JavaScript
to CoffeeScript and have fun with web development again.

➤ Javier Collado
QA Automation Engineer, Canonical Ltd.

CoffeeScript
Accelerated JavaScript Development

Trevor Burnham

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-78-4
Printed on acid-free paper.
Book version: P1.0—July 2011

http://pragprog.com

Contents

Foreword xi

Acknowledgments xiii

Preface xv

1. Getting Started 1
Installing CoffeeScript 11.1

1.2 Text Editors for CoffeeScript 5
1.3 Meet ’coffee’ 6
1.4 Debugging CoffeeScript 9

2. Functions, Scope, and Context 13
Functions 101 132.1

2.2 Scope: Where You See ’Em 18
2.3 Context (or, “What Is ’this’?”) 21
2.4 Property Arguments (@arg) 24
2.5 Default Arguments (arg =) 25
2.6 Splats (...) 28
2.7 Project: 5x5 Input Parser 29
2.9 Exercises 34

3. Collections and Iteration 37
Objects as Hashes 373.1

3.2 Arrays 40
3.3 Iterating over Collections 43
3.4 Conditional Iteration 46
3.5 Comprehensions 47
3.6 Pattern Matching (or, Destructuring Assignment) 48
3.7 Project: 5x5 Solitaire 50
3.9 Exercises 56

4. Modules and Classes 59
Modules: Splitting Up Apps 604.1

4.2 The Power of Prototypes 61
4.3 Classes: Functions with Prototypes 63
4.4 Inheritance with ’extends’ 65
4.5 Project: Refactoring 5x5 68
4.7 Exercises 72

5. Web Interactivity with jQuery 75
The Tao of jQuery 765.1

5.2 Manipulating the DOM 76
5.3 Getting Selective 77
5.4 Reacting to Events 79
5.5 Project: Browser-Based 5x5 80
5.7 Exercises 88

6. Server-Side Apps with Node.js 91
What Is Node.js? 916.1

6.2 Modularizing Code with ’exports’ and ’require’ 92
6.3 Thinking Asynchronously 93
6.4 Project: Multiplayer 5x5 97
6.6 Exercises 105

A1. Answers to Exercises 107
Functions, Scope, and Context 107A1.1

A1.2 Collections and Iteration 109
A1.3 Modules and Classes 111
A1.4 Web Interactivity with jQuery 112
A1.5 Server-Side Apps with Node.js 113

A2. Ways of Running CoffeeScript 115
Web Consoles 115A2.1

A2.2 Running CoffeeScript in Your Web App 116
A2.3 CoffeeScript on Rails 116
A2.4 CoffeeScript via Middleware 117
A2.5 CoffeeScript on Node.js 117
A2.6 Rapid Websites with Middleman 118
A2.7 CoffeeScript for System Scripts 119

• viii

A3. Cheat Sheet for JavaScripters 121
Boolean Operators 121A3.1

A3.2 The Existential Operator 121
A3.3 Context and Prototype Accessors 122
A3.4 Function Definitions 122
A3.5 Conditionals 122
A3.6 Property Existence 122
A3.7 Iteration 123

A4. Bibliography 125

Index 127

• ix

Foreword
JavaScript is born free, but until recently, everywhere it was in chains.

JavaScript had never been a very pleasant language to work in: terribly
slow, implemented with different quirks in different browsers, stuck fast in
the amber of time since the late 1990s. Perhaps you used it in the past to
implement a dropdown menu or a reorderable list, but you probably didn’t
enjoy the experience.

Fortunately for us, the JavaScript of today is enjoying a well-deserved re-
naissance. Thanks to the tireless efforts of browser implementers, it’s now
the fastest mainstream dynamic language; it’s present everywhere, from
servers to Photoshop, and it’s the only possible language you can use to
program all angles of the web.

CoffeeScript is a little language that aims to give you easy access to the good
parts of JavaScript: the first-class functions, the hash-like objects, even the
much-misunderstood prototype chain. If we do our job right, you’ll end up
writing one-third less code in order to generate much the same JavaScript
you would have written in the first place.

CoffeeScript places a high value on the readability of code and the elimination
of syntactic clutter. At the same time, there’s a fairly one-to-one correspon-
dence between CoffeeScript and JavaScript, which means that there should
be no performance penalty—in fact, many JavaScript libraries end up run-
ning faster after being ported to CoffeeScript due to some of the optimizations
the compiler can perform.

You’re fortunate to have picked up this book, because Trevor has been an
enthusiastic contributor to CoffeeScript since the early days. Few people
know more about the ins and outs of the language or the history of the
debate behind language features and omissions than he does. This book is
a gentle introduction to CoffeeScript led by an expert guide.

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

I’m looking forward to hearing about all of the exciting projects that I’m sure
will come out of it, and—who knows—perhaps you’ll be inspired to create
a little language of your very own.

Jeremy Ashkenas, creator of CoffeeScript
April 2011

• xii

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Acknowledgments
CoffeeScript is a young language. But from the start, it’s drawn an excep-
tionally diverse and spirited crowd. That wonderful energy—on IRC, GitHub,
Hacker News, blogs, Twitter, and elsewhere—is what inspired me to write
this book. To everyone who greeted CoffeeScript with enthusiasm in its in-
fancy, I thank you.

Thanks, of course, to Jeremy Ashkenas for creating the language and con-
tributing a generous foreword to this book; CoffeeScript could not have
asked for a better BDFL. Thanks also to CoffeeScript’s other contributors,
who are too numerous to name here.1

Thanks to the technical reviewers—any remaining errors are completely and
utterly “my bad.” I received helpful feedback from Javier Collado, Kevin Gisi,
Darcy Laycock, Scott Leberknight, Sam Stephenson, Travis Swicegood,
Federico Tomassetti, Stefan Turalski, and Dr. Nic Williams. Special shout-
outs to Jeremy Ashkenas (again) and Michael Ficarra, core contributors to
the CoffeeScript project who took time from their busy schedules to set me
straight on many of the language’s finer points. Thanks also to Brendan
Eich, the creator of JavaScript, who graciously clarified several points.

Thanks to the Pragmatic Bookshelf crowd. First and foremost to Michael
Swaine, whom I’m proud to call my editor. Thanks also to managing editor
Susannah Pfalzer and to bigwigs Dave Thomas and Andy Hunt for taking a
chance on a book on a lesser-known language from an even less-known
author.

Thanks, finally, to Scott and Teresa Burnham, more commonly referred to
by me and at least two other people as “Dad” and “Mom.” Their support,
and their example, has been valuable beyond measure.

1. http://github.com/jashkenas/coffee-script/contributors

http://github.com/jashkenas/coffee-script/contributors
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Preface
JavaScript was never meant to be the most important programming language
in the world. It was hacked together in ten days, with ideas from Scheme
and Self packed into a C-like syntax. Even its name was an awkward fit,
referring to a language with little in common besides a few keywords.1 But
once JavaScript was released, there was no controlling it. As the only lan-
guage understood by all major browsers, JavaScript quickly became the
lingua franca of the Web. And with the introduction of Ajax in the early
2000s, what began as a humble scripting language for enhancing web pages
suddenly became a full-fledged rich application development language.

As JavaScript’s star rose, discontent came from all corners. Some pointed
to its numerous little quirks and inconsistencies.2 Others complained about
its lack of classes and inheritance. And a new generation of coders, who
had cut their teeth on Ruby and Python, were stymied by its thickets of
curly braces, parentheses, and semicolons.

A brave few created frameworks for web application development that gen-
erated JavaScript code from other languages, notably Google’s GWT and
280 North’s Objective-J. But few programmers wanted to add a thick layer
of abstraction between themselves and the browser. No, they would press
on, dealing with JavaScript’s flaws by limiting themselves to “the good parts”
(as in Douglas Crockford’s 2008 similarly titled book).

That is, until now.

The New Kid in Town

On Christmas Day 2009, Jeremy Ashkenas first released CoffeeScript, a
little language he touted as “JavaScript’s less ostentatious kid brother.” The
project quickly attracted hundreds of followers on GitHub as Ashkenas and

1. See Peter Seibel’s interview with Brendan Eich, the creator of JavaScript, in Coders
at Work [Sei09].

2. http://wtfjs.com/

http://wtfjs.com/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

other contributors added a bevy of new features each month. The language’s
compiler, originally written in Ruby, was replaced in March 2010 by one
written in CoffeeScript.

After its 1.0 release on Christmas 2010, CoffeeScript became one of Github’s
“most-watched” projects. And the language attracted another flurry of atten-
tion in April 2011, when David Heinemeier Hansson confirmed rumors that
CoffeeScript support would be included in Ruby on Rails 3.1.

Why did this little language catch on so quickly? Three reasons come to
mind: familiarity, safety, and readability.

The Good Parts Are Still There

JavaScript is vast. It contains multitudes. JavaScript offers many of the
best features of functional languages while retaining the feel of an imperative
language. This subtle power is one of the reasons that JavaScript tends to
confound newcomers: functions can be passed around as arguments and
returned from other functions; objects can have new methods added at any
time; in short, functions are first-class objects.

All that power is still there in CoffeeScript, along with a syntax that encour-
ages you to use it wisely.

The Compiler Is Here to Help

Imagine a language with no syntax errors, a language where the computer
forgives you your typos and tries as best it can to comprehend the code you
give it. What a wonderful world that would be! Sure, the program wouldn’t
always run the way you expected, but that’s what testing is for.

Now imagine that you write that code once and send it out to the world, typos
and all, and millions of computers work around your small mistakes in
subtly different ways. Suddenly statements that your computer silently
skipped over are crashing your entire app for thousands of users.

Sadly, that’s the world we live in. JavaScript doesn’t have a standard inter-
preter. Instead, hundreds of browsers and server-side frameworks run
JavaScript in their own way. Debugging cross-platform inconsistencies is
a huge pain.

CoffeeScript can’t cure all of these ills, but the compiler tries its best to
generate JavaScript Lint-compliant output3, which is a great filter for com-
mon human errors and nonstandard idioms. And if you type something that

3. http://www.javascriptlint.com/

• xvi

http://www.javascriptlint.com/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

just doesn’t make any sense, such as 2 = 3, the CoffeeScript compiler will
tell you. Better to find out sooner than later.

It’s All So Clear Now

Writing CoffeeScript can be highly addictive. Why? Take this piece of
JavaScript:

function cube(num) {
return Math.pow(num, 3);

}
var list = [1, 2, 3, 4, 5];
var cubedList = [];
for (var i = 0; i < list.length; i++) {

cubedList.push(cube(list[i]));
}

Now here’s an equivalent snippet of CoffeeScript:

cube = (num) -> Math.pow num, 3
list = [1, 2, 3, 4, 5]
cubedList = (cube num for num in list)

For those of you keeping score, that’s half the character count and less than
half the line count! Those kinds of gains are common in CoffeeScript. And
as Paul Graham once put it, “Succinctness is power.”4

Shorter code is easier to read, easier to write, and, perhaps most critically,
easier to change. Gigantic heaps of code tend to lumber along, as any signif-
icant modifications require a Herculean effort. But bite-sized pieces of code
can be revamped in a few swift keystrokes, encouraging a more agile, iterative
development style.

It’s worth adding that switching to CoffeeScript isn’t an all-or-nothing
proposition—CoffeeScript code and JavaScript code can interact freely.
CoffeeScript’s strings are just JavaScript strings, and its numbers are just
JavaScript numbers; even its classes work in JavaScript frameworks like
Backbone.js.5 So don’t be afraid of calling JavaScript code from CoffeeScript
code or vice versa. As an example, we’ll talk about using CoffeeScript with
one of JavaScript’s most popular libraries in Chapter 5, Web Interactivity
with jQuery, on page 75.

4. http://www.paulgraham.com/power.html
5. http://documentcloud.github.com/backbone/

• xvii

http://www.paulgraham.com/power.html
http://documentcloud.github.com/backbone/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Embedding JavaScript in CoffeeScript

This is as good a place as any to mention that you can stick JavaScript inside of
CoffeeScript code by surrounding it with backticks, like so:

console.log `impatient ? useBackticks() : learnCoffeeScript()`

The CoffeeScript compiler simply ignores everything between the backticks. That
means that if, for instance, you declare a variable between the backticks, that
variable won’t obey conventional CoffeeScript scope rules.

In all my time writing CoffeeScript, I’ve never once needed to use backtick escapes.
They’re an eyesore at best and dangerous at worst. So in the immortal words of
Troy McClure: “Now that you know how it’s done—don’t do it.”

But enough ancient history. Coding is believing, everything else is just meta,
and as Jeff Atwood once said,“Meta is murder.”6 So let’s talk a little bit about
the book you’re reading now, and then—in just a few pages, I promise!—we’ll
start banging out some hot code.

Who This Book Is For

If you’re interested in learning CoffeeScript, you’ve come to the right place!
However, because CoffeeScript is so closely linked to JavaScript, there are
really two languages running through this book—and not enough pages to
teach you both. Therefore, I’m going to assume that you know some
JavaScript.

You don’t have to be John “JavaScript Ninja” Resig. In fact, if you’re only
an amateur JavaScripter, great! You’ll learn a lot about JavaScript as you
go through this book. Check the footnotes for links to additional resources
that I recommend. If you’re new to programming entirely, you should defi-
nitely check out Eloquent JavaScript [Hav11], which is also available in an
interactive online format.7 If you’ve dabbled a bit but want to become an
expert, head to the JavaScript Garden.8 And if you want a comprehensive
reference, no one does it better than the Mozilla Developer Network.9

You may notice that I talk about Ruby a lot in this book. Ruby inspired
many of CoffeeScript’s great features, like implicit returns, splats, and
postfix if/unless. And thanks to Rails 3.1, CoffeeScript has a huge following

6. http://www.codinghorror.com/blog/2009/07/meta-is-murder.html
7. http://eloquentjavascript.net/
8. http://javascriptgarden.info/
9. https://developer.mozilla.org/en/JavaScript/Guide

• xviii

http://www.codinghorror.com/blog/2009/07/meta-is-murder.html
http://eloquentjavascript.net/
http://javascriptgarden.info/
https://developer.mozilla.org/en/JavaScript/Guide
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

in the Ruby world. So if you’re a Rubyist, great! You’ve got a head start. If
not, don’t sweat it; everything will fall into place once you have a few exam-
ples under your belt.

If anything in the book doesn’t make sense to you, I encourage you to post
a question about it on the book’s forum.10 While I try to be clear, the only
entities to whom programming languages are completely straightforward
are computers—and they buy very few books.

How This Book Is Organized

We’ll start our journey by discovering the various ways that we can compile
and run CoffeeScript code. Then we’ll delve into the nuts and bolts of the
language. Each chapter will introduce concepts and conventions that tie
into our ongoing project (see the next section).

To master CoffeeScript, you’ll need to know how it works with the rest of
the JavaScript universe. So after learning the basics of the language, we’ll
take brief tours of jQuery, the world’s most popular JavaScript framework,
and Node.js, an exciting new project that lets you run JavaScript outside
of the browser. While we won’t go into great depth with either tool, we’ll see
that they go with CoffeeScript like chocolate and peanut butter. And by
combining their powers, we’ll be able to write an entire multiplayer game in
just a few hours.

No matter what level you’re at, be sure to do the exercises at the end of each
chapter. They’re designed to be quick yet challenging, illustrating some of
the most common pitfalls CoffeeScripters fall into. Try to solve them on your
own before you check the answers in Appendix 1, Answers to Exercises, on
page 107.

The code presented in this book, as well as errata and discussion forums,
can be found on its PragProg page: http://pragprog.com/titles/tbcoffee/cof-
feescript.

About the Example Project: 5x5

The last section of each chapter applies the new concepts to an original
word game called 5x5. As its name suggests, 5x5 is played on a grid five
tiles wide and five tiles high. Each tile has a random letter placed on it at
the start. Then the players take turns swapping letters on the grid, scoring
points for all words formed as a result of the swap (potentially, this can be

10. http://forums.pragprog.com/forums/169

• xix

http://pragprog.com/titles/tbcoffee/coffeescript
http://pragprog.com/titles/tbcoffee/coffeescript
http://forums.pragprog.com/forums/169
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Figure 1—In the console and web versions of our project, the game logic code will be
the same.

four words at each of the two swapped tiles: one running horizontally, one
vertically, and two diagonally—only left-to-right diagonals count).

Scoring is based on the Scrabble point value of the letters in the formed
words, with a multiplier for the number of distinct words formed. So, at the
upper limit, if eight words are formed in one move, then the point value of
each is multiplied by eight. Words that have already been used in the game
don’t count.

We’ll build a command-line version of the game in Chapters 2–4, then move
it to the browser in Chapter 5, Web Interactivity with jQuery, on page 75,
and finally add multiplayer capability in Chapter 6, Server-Side Apps with
Node.js, on page 91. Moving the code from the command line to the browser
to the server will be super-easy—they all speak the same language!

The CoffeeScript Community

A great language is of little use without a strong community. If you run into
problems, who you gonna call?

Posting a question to StackOverflow (being sure to tag your question coffee-
script) is a terrific way to get help, especially if you post a snippet of the code
that’s hassling you.11 If you need a more immediate answer, you can usually
find friendly folks in the #coffeescript channel on Freenode IRC. For relaxed

11. http://stackoverflow.com

• xx

http://stackoverflow.com
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

discussion of CoffeeScript miscellany, try the Google Group.12 For more
serious problems, such as possible bugs, you should create an issue on
GitHub.13 You can also request new language features there. CoffeeScript
is still evolving, and the whole team welcomes feedback.

What about documentation? You’ve probably already seen the snazzy official
docs at http://coffeescript.org. There’s also an official wiki at http://github.
com/jashkenas/coffee-script/wiki. And now there’s this book.

Which brings us to me. I run @CoffeeScript on Twitter; you can reach me
there, or by good old-fashioned email at trevorburnham@gmail.com.

These are exciting times for web development. Welcome aboard!

12. http://groups.google.com/forum/#!forum/coffeescript
13. http://github.com/jashkenas/coffee-script/issues

• xxi

http://coffeescript.org
http://github.com/jashkenas/coffee-script/wiki
http://github.com/jashkenas/coffee-script/wiki
http://groups.google.com/forum/#!forum/coffeescript
http://github.com/jashkenas/coffee-script/issues
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

CHAPTER 1

Getting Started
If you read the preface, then you now know what CoffeeScript is, where it
came from, and why it’s the best thing to happen to programmers since
Herman Miller. But you haven’t actually written a line of code yet. The wait
is unbearable, isn’t it?

Well, take a deep breath; the time has come. In this chapter, we’re going to
install CoffeeScript on your system, get your editor up to speed, and finally
run some code!

1.1 Installing CoffeeScript

The CoffeeScript compiler is written in CoffeeScript. That presents a chicken-
and-egg problem: How do we run the compiler on a system that doesn’t al-
ready have the CoffeeScript compiler? If only there were some way to run
JavaScript on your machine without a web browser and give that code access
to the local file system…

Ah, but there is: Node.js! People think of Node as a JavaScript web server
(more on that in Chapter 6, Server-Side Apps with Node.js, on page 91), but
it’s so much more. Fundamentally, it’s a bridge between JavaScript code
and your operating system. Node also has a wonderful tool called npm, the
Node Package Manager.1 If your background is in Ruby, think of it as the
Node analog of RubyGems. It’s become the de facto standard for installing
and managing Node apps and libraries.

The rest of this section will be about installing Node and npm, which we
need in order to use CoffeeScript’s canonical coffee compiler. (We’ll also need
Node and npm for the last chapter of this book.) But if you’re in a rush to
get your feet wet, you might want to head over to http://coffeescript.org/,

1. http://npmjs.org/

http://coffeescript.org/
http://npmjs.org/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

hit the “Try CoffeeScript” button, and skip ahead to the next chapter. (You’ll
need something in your browser to display console output, such as Firebug
Lite.2)

Ready? Let’s get to it.

CoffeeScript with Node.js and npm

Although there are many ways to run CoffeeScript without Node (several of
which are covered in Appendix 2, Ways of Running CoffeeScript, on page 115),
I’ll assume throughout this book that you’re using the standard coffee com-
mand, which was designed to run under Node. The final chapter, Chapter
6, Server-Side Apps with Node.js, on page 91, is the only one that explicitly
requires Node and npm.

Heads up—if you’re on Windows, you’ll need to get Cygwin before we contin-
ue.3 Cygwin basically acts as a Linux emulator. While first-class Windows
support is on the Node.js roadmap for version 0.6, using Cygwin is the most
reliable approach available as of this writing.

If you’re on a Mac, you’ll need to install Xcode,4 not for the app itself but
for the command-line developer tools that come with it. You can check
whether these tools are already on your system by trying to run gcc, the
GNU Compiler Collection:

$ gcc
i686-apple-darwin10-gcc-4.2.1: no input files

If your output looked like that, you’re set. If not, get Xcode (if you’re on a
Mac) or install the standard build tools directly (if you’re on Linux or Cygwin).

Everyone’s on a Linux/Unix/Mac-type system with standard build tools
now? Great! Now head to http://gist.github.com/579814. There you’ll find
a bewildering array of installation options curated by npm creator Isaac
Schlueter. For all the Mac users out there, I recommend the Homebrew
approach (install Homebrew first).5 For everyone else, the direct ap-
proach—first on the list—is probably best. Node is a big package, so it may
take a few minutes to install.

Once Node is on your system, run the latest remote install script for npm:

$ curl http://npmjs.org/install.sh | sh

2. http://getfirebug.com/firebuglite
3. http://www.cygwin.com/
4. http://developer.apple.com/xcode/
5. http://github.com/mxcl/homebrew

Installing CoffeeScript • 2

http://gist.github.com/579814
http://getfirebug.com/firebuglite
http://www.cygwin.com/
http://developer.apple.com/xcode/
http://github.com/mxcl/homebrew
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

If you get a permissions error, either chown the directory Node is installed in
(this will save you from headaches down the road) or use sudo sh instead of
plain sh.

No matter how you installed them, check that node and npm are on your path:
PATH

$ node -v
v0.4.8
$ npm -v
1.0.13

(A word on versions: Node’s API is stable in even-numbered point releases.
So, the examples in this book should run fine under the latest 0.4.x. Node
0.5.x, on the other hand, will feature API changes, which will be incorporated
into the stable 0.6.x. As to npm, I’ll assume throughout this book that you’re
using npm 1.x. So if you’re still on npm 0.x, now would be a good time to
upgrade.)

Now grab the latest CoffeeScript release:

$ npm install -g coffee-script
/usr/local/bin/cake -> /usr/local/lib/node_modules/coffee-script/bin/cake
/usr/local/bin/coffee -> /usr/local/lib/node_modules/coffee-script/bin/coffee

The -g flag, short for --global, makes the installed library available system-
wide. (By default, npm install [package] puts the given package in the local
node_modules subdirectory, which is handy when installing a package that is
only for a specific project.) I recommend using -g whenever you install
packages that include binaries.

The output from npm install tells us that two binaries were installed as part
of the package: cake and coffee. Let’s check that coffee is on our system’s PATH:

$ coffee -v
CoffeeScript version 1.1.1

If that didn’t work, look at the directory before -> in your npm install output
(for example, /usr/local/bin) and add that directory to your PATH. On a Mac with
the default bash shell, do that by adding the following line to your ~/.profile:

export PATH=/usr/local/bin:$PATH

Make sure to include the :$PATH part—otherwise, /usr/local/bin would replace
your PATH rather than being added to it! For the line to take effect, you’ll
have to save the file and start a new shell session (for example, by opening
a new Terminal window and closing the old one).

Installing CoffeeScript • 3

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

If you’re using a different OS or shell, these steps might be slightly different;
enter echo $SHELL to find out which shell you’re using. Don’t forget that you
have to restart your shell session after modifying the file in order for it to
take effect.

There’s one last step: just as our binaries have to be on PATH for us to be
able to use them from anywhere, the Node libraries npm installs have to be
on NODE_PATH. To see where Node is installing its libraries, type the following:

$ npm ls -g
/usr/local/lib

(This command also lists all of the packages that npm has installed globally.
If you omit -g, you’ll see all the packages installed in the current directory.)
We need to add the node_modules subdirectory of that path to NODE_PATH. On
my system, that means adding the following to ~/.profile:

export NODE_PATH=/usr/local/lib/node_modules

Once again, the steps you’ll need to take may be different on your system.
To test that NODE_PATH is working its magic, start a new shell session and
enter the node command. That’ll take you to the Node.js REPL, an environ-
ment where you can interactively run commands. Now enter this:

> require('coffee-script')

I promise, that’s the only JavaScript you’ll have to type in this book!

If NODE_PATH isn’t set correctly, you’ll get Error: Cannot find module 'coffee-script'. If
you see a long object description instead, you’re golden. When you’re done
with Node’s REPL, enter process.exit(), or just hit Ctrl - c .

By the way, the coffee-script library is beyond the scope of this book; suffice
it to say that it lets you compile CoffeeScript to JavaScript from within your
CoffeeScript or JavaScript program. You can do some pretty cool stuff with
this, like writing your own compiler with custom postprocessing,6 or writing
your own build script as a Cakefile.7

Whew! I know that installation may have felt like a lot of work, but believe
me, those efforts will pay off now that we have the full power of Node and
npm at our disposal. Now let’s set up your editing environment.

6. http://github.com/jashkenas/coffee-script/wiki/%5BExtensibility%5D-Hooking-
into-the-Command-Line-Compiler

7. https://github.com/jashkenas/coffee-script/wiki/%5BHowTo%5D-Compiling-and-
Setting-Up-Build-Tools

Installing CoffeeScript • 4

http://github.com/jashkenas/coffee-script/wiki/%5BExtensibility%5D-Hooking-into-the-Command-Line-Compiler
http://github.com/jashkenas/coffee-script/wiki/%5BExtensibility%5D-Hooking-into-the-Command-Line-Compiler
https://github.com/jashkenas/coffee-script/wiki/%5BHowTo%5D-Compiling-and-Setting-Up-Build-Tools
https://github.com/jashkenas/coffee-script/wiki/%5BHowTo%5D-Compiling-and-Setting-Up-Build-Tools
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Staying on the Bleeding Edge

If you absolutely must have the latest CoffeeScript, it’s actually pretty easy. Just
use git to clone the CoffeeScript repo, then have npm install it from the local directory:

$ git clone http://github.com/jashkenas/coffee-script.git
$ cd coffee-script
$ npm install -g

This will install the current master branch, which may or may not be stable. You
can revert to a specific version of CoffeeScript (say, 1.1.1) by running the following:

$ npm install -g coffee-script@1.1.1

1.2 Text Editors for CoffeeScript

An up-to-date list of text editors with CoffeeScript support can be found at
http://github.com/jashkenas/coffee-script/wiki/Text-editor-plugins. If
you’re on a Mac, I recommend the TextMate plugin maintained by Jeremy
Ashkenas himself.8 As of this writing, there are also plugins for Vim, Emacs,
gedit, jEdit, and IntelliJ IDEA.

Recently, it’s become viable to code with a web-based text editor, enabling
real-time collaboration and freeing you from any particular device. Currently,
the web-based editor with the best support for CoffeeScript is Cloud9, with
the Cloud9 Live CoffeeScript Extension.9

Of course, you can use any editor you like, but using an editor with Coffee-
Script support gives you three big advantages: syntax highlighting, smart
indentation, and built-in compilation shortcuts. The first two are easy to
appreciate, but the last is something many coders fail to take advantage of.

In TextMate, I can use DR (“Run”) to run a CoffeeScript file, or DB (“Build”)
just to look at the compiled JavaScript. Compilation takes mere milliseconds,
so if I’m not sure how a CoffeeScript expression translates into JavaScript,
a quick build is the fastest way to find out. If text is selected, these com-
mands run on the selection instead of on the whole file, which makes it a
lot easier to test pieces of code and nail down syntax errors.

One quick caution—some editors (including TextMate) don’t pick up PATH
by default, which means you get an error like command not found when it tries
to run coffee. If you run into this problem, go into your editor’s preferences

8. http://github.com/jashkenas/coffee-script-tmbundle
9. http://cloud9ide.com/ and https://github.com/tanepiper/cloud9-livecoffee-ext,

respectively.

Text Editors for CoffeeScript • 5

http://github.com/jashkenas/coffee-script/wiki/Text-editor-plugins
http://github.com/jashkenas/coffee-script-tmbundle
http://cloud9ide.com/
https://github.com/tanepiper/cloud9-livecoffee-ext
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Figure 2—Running selected code directly from TextMate

(perhaps under Shell Variables) and set PATH to match the output you get
when you run echo $PATH in your shell. You might want to set NODE_PATH while
you’re at it.

1.3 Meet ’coffee’

Now that you’ve got your editor set up, it’s time to introduce coffee, the
standard command line compiler. Let’s start with the obligatory “Hello,
world!” program. Open up your editor and create a new file called hello.coffee
with the following contents:

console.log 'Hello, world!'

Now you just need to run it:

$ coffee hello.coffee
Hello, world!

You might be wondering several things: First, where did that console.log
function come from? (Answer: It’s a Node.js global.) Second, where’s the
JavaScript? Isn’t the point of CoffeeScript that it compiles to JavaScript?

What’s happening here is that coffee is compiling hello.coffee to JavaScript
internally, then piping that output straight to Node for immediate execution.
If that’s not what you want to do, you’ll have to use one or more of coffee’s
many options. To see them, use coffee -h:

$ coffee -h

Usage: coffee [options] path/to/script.coffee

-c, --compile compile to JavaScript and save as .js files
-i, --interactive run an interactive CoffeeScript REPL
-o, --output set the directory for compiled JavaScript
-j, --join concatenate the scripts before compiling
-w, --watch watch scripts for changes, and recompile
-p, --print print the compiled JavaScript to stdout
-l, --lint pipe the compiled JavaScript through JSLint

Meet ’coffee’ • 6

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

-s, --stdio listen for and compile scripts over stdio
-e, --eval compile a string from the command line
-r, --require require a library before executing your script
-b, --bare compile without the top-level function wrapper
-t, --tokens print the tokens that the lexer produces
-n, --nodes print the parse tree that Jison produces

--nodejs pass options through to the "node" binary
-v, --version display CoffeeScript version
-h, --help display this help message

So if you wanted to see the JavaScript that the compiler hid from you just
now, you’d run this:

$ coffee -p hello.coffee
(function() {

console.log('Hello, world!');
}).call(this);

See JavaScript, Under Wraps, on page 8 for an explanation of those extra
two lines.

Compiling to JavaScript

Probably the most common flag is -c (“compile”), which saves the JavaScript
output to a file. The file is named the same as the original, except with a .js
extension instead of .coffee. Let’s stick with the caffeinated beverage theme:

$ coffee -c mochaccino.coffee

This compiles to a file named mochaccino.js in the same directory. You can put
the output somewhere else with the -o (“output”) flag, followed by the name
of the target directory:

$ coffee -co output source

This example reads every .coffee file in source (and its subdirectories) and
writes the corresponding .js files in output. Note that -co is simply shorthand
for -c -o. The order matters: -o needs to immediately precede the output direc-
tory name.

Another popular flag is -w (“watch”), which tells coffee to keep running in the
background; in conjunction with -c, it’ll recompile your code every time you
make changes. It even works on directories and preserves nested file
structures. So if I run the following, everything in the coffee directory will be
continuously recompiled to the js directory:

$ coffee -cwo js coffee

This will continue until I kill the compiler with Ctrl - c .

Meet ’coffee’ • 7

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

JavaScript, Under Wraps

You’re probably wondering why CoffeeScript output comes wrapped in a function.
The reason is, in a word, namespacing. If you load a bunch of JavaScript files into
a browser application, they’re treated like one big block of code. That can easily
lead to unintended consequences:

// First file
function declareNuclearWar() {

alert('Relax. This is only a test');
}
window.onload = function() {

declareNuclearWar();
}

// Second file
function declareNuclearWar() {

alert('The bombing begins in 5 minutes.');
}

Whoever wrote the first file had no idea the havoc that code was going to unleash!
Calamity could have been averted by wrapping each file in an anonymous function,
thus isolating the two declareNuclearWar declarations. (See Section 2.2, Scope: Where
You See ’Em, on page 18.) This is called the module pattern.

To get modules to talk to each other, you’ve got to “export” some variables. (There’s
more on that in Section 4.1, Modules: Splitting Up Apps, on page 60.)

Oh—and if you must get rid of the wrapping, run coffee with the -b (“bare”) flag.

The REPL

If you just run coffee with no arguments, you’ll enter what overly sophisticated
programmers call the REPL, or the Read-Eval-Print Loop. In layman’s terms,
this means you type something, it runs, you see the output, repeat.

This is great for playing around with the language. The REPL runs in a
Node.js environment and prints the result of each expression. For instance,
if we want to remind ourselves of some of the quirks of JavaScript’s parseInt
function, we can try this:

$ coffee
coffee> parseInt '221'
221
coffee> parseInt '221b'
221
coffee> parseInt 'b221'
NaN

Meet ’coffee’ • 8

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

That’s it for our coverage of coffee. By the way, if you want to see how coffee
works, check out the annotated source.10 If you’d like, you can even reverse-
engineer it and write your own interface for the CoffeeScript compiler (like
my own Jitter11).

Remember that coffee is a lightweight tool; it doesn’t offer features like
minification or automatically running tests after compilation. If you want
to add those to your project, you should write your own build script, typically
as a Cakefile. You can find some documentation on Cakefiles over at the
CoffeeScript wiki.12

You’re almost ready to start writing CoffeeScript code—but first, what should
you do if something goes awry?

1.4 Debugging CoffeeScript

One issue many folks have with writing code in a language like CoffeeScript
is that runtime errors reference compiled code, not source code. That’s a legit-
imate concern, and several solutions have been discussed.13 Unfortunately,
for now you’re left with stack traces whose line numbers have little to do
with your source code.

Here’s the good news: CoffeeScript’s compiled JavaScript is very readable.
If you understand how the two languages are related (and I hope you will
after reading this book), then matching a point of failure in your program
to the original CoffeeScript source is pretty easy.

It’s not ideal, but it’s the price of being on the cutting edge. As the Coffee-
Script ecosystem grows and the tools get better, it’ll get easier and easier to
track down bugs. The folks at the Mozilla Foundation are hard at work
adding CoffeeScript debugging support to Firefox, and Node can’t be far
behind. Until then, test your code thoroughly, use debug-mode logging, and
know your JavaScript.

What was that middle thing? Oh, right. Under Node.js and browsers equipped
with a developer console (or a bookmarklet like the previously mentioned
Firebug Lite), you can display messages using console.log. Two possible
problems: you don’t always want to log every detail, and you don’t want to
call console.log if it doesn’t exist. A common solution is to use a wrapper
function, but then you don’t get those precious JavaScript line numbers

10. http://jashkenas.github.com/coffee-script/documentation/docs/command.html
11. http://github.com/TrevorBurnham/jitter
12. http://github.com/jashkenas/coffee-script/wiki
13. http://github.com/jashkenas/coffee-script/issues/558

Debugging CoffeeScript • 9

http://jashkenas.github.com/coffee-script/documentation/docs/command.html
http://github.com/TrevorBurnham/jitter
http://github.com/jashkenas/coffee-script/wiki
http://github.com/jashkenas/coffee-script/issues/558
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

when you log something (since all the logging is being done from the same
place: the wrapper function). So here’s one approach I recommend:

window.debugMode = document.location.hash.match(/debug/) and console?
console.log 'This is the first of many debug-mode outputs' if debugMode

In this example, debugMode will be true if and only if the “hash” in the address
bar contains the string debug (e.g. page.html#debug) and the browser has a
console object. This gives you an easy way to enable/disable all those extra
messages when you load the page. Declaring debugMode as a property of window
makes it a global variable.

A simpler but less versatile approach is to use a soak (see Soaks: 'a?.b', on
page 40) to ensure that console.log is only called when console exists:

console?.log 'Thanks to ?, this line is perfectly safe!'

Under Node, there are plenty of libraries for displaying output at several
levels of verbosity (just do a quick Google search for “nodejs logging library”),
including my own styout, which comes with support for colored-console
output.14

Logging can replace comments, providing more information during develop-
ment on how the code is working. For example, here’s a typical piece of
documented code:

area = height * (base1 + base2) / 2
now we have the area of the trapezoid

The comment could be replaced with a call to console.log as follows:

area = height * (base1 + base2) / 2
console.log "The area of the trapezoid is #{area}" if debugMode

Another common idiom is to make assertions throughout code. The standard
console object has an assert function that serves that purpose nicely, taking
a value and an error message (to be displayed if the value is non-truthy):

fundamentalLaws = ['death', 'taxes', 'gravity']
if debugMode

console.assert 'gravity' in fundamentalLaws, 'gravity oughta be a law!'

Finally, the most important guard against bugs is to write well-structured
code. While the tools don’t exist yet to give you an exact line number for
your runtime error, at least you should always be able to track down the
part of your app that’s causing you grief.

14. http://github.com/TrevorBurnham/styout

Debugging CoffeeScript • 10

http://github.com/TrevorBurnham/styout
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

1.5 Ready to Roll!

In this chapter, you’ve learned how to install CoffeeScript on your machine
using Node.js and npm. You’ve also gotten your favorite text editor on
speaking terms with the language, explored some of the ways you can use
CoffeeScript as part of your development workflow, and considered the
challenge of debugging.

So now that you know how to run CoffeeScript code, it’s about time we went
into the nuts and bolts of the language itself. The rest of this book will be
jam-packed with snippets of code. The best way to follow along is to run
these from your favorite text editor; if you don’t understand how they work,
try tweaking a line or two to see what happens. You might also want to look
at the compiled JavaScript from time to time.

Code snippets that refer to a file, like so, may require additional pieces in
order to run:

Download GettingStarted/outOfContext.coffee
foo bar, baz

Those that don’t are self-contained:

OK = 'computer'
console.log 'No alarms and no surprises.' if OK

And trust me—you’re going to have a lot more fun if your editor is equipped
with a Run command so that you can see the code’s results just by tapping
a keyboard shortcut. It’s a CoffeeScript learner’s best friend.

Ready to Roll! • 11

http://media.pragprog.com/titles/tbcoffee/code/GettingStarted/outOfContext.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

CHAPTER 2

Functions, Scope, and Context
The heart and soul of CoffeeScript consists of two characters: ->. That’s all
it takes to define a new function, but don’t let the terseness fool you; as
we’ll soon see, functions are powerful, versatile objects. Mastering them is
the first step to mastering CoffeeScript.

While functions are the major players of this chapter, we’ll meet a cheerful
supporting cast along the way: variables, strings, conditionals, exceptions,
and everything else you need to write useful functions. We’ll also have a
refresher on two crucial concepts, scope and context, and show how they
carry over to CoffeeScript. Then we’ll conclude our tour by looking at some
very cool features: property arguments, default arguments, and splats.

At this point we’ll be ready to tackle our first project, in which we’ll put to-
gether an input prompt for our little word game. And last but not least, this
chapter’s exercises will push your newfound CoffeeScript expertise to its
limits.

2.1 Functions 101

It’s finally time to declare our first function! Check it out:

-> 'Hello, functions!'

I didn’t say it would be a useful function, did I? But it does do something:
it returns a string.

Don’t take my word for it. Punch this into your favorite text editor and hit
the Run command:

console.log do -> 'Hello, functions!'

You’ll be greeted with something cheerful:

Hello, functions!

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

What does do do? (It has nothing to do with JavaScript’s do...while loop.) It
just means “run the following function.” We could have done the same thing
using a mess of parentheses:

console.log (-> 'Hello functions!')()

Hello, functions!

“Where’s the return keyword,” you ask? CoffeeScript takes a cue from Ruby
here, implicitly returning the last expression from each function. You can
still use return explicitly, but it’s optional, and the preferred style is to omit
it unless you’re breaking the flow of execution. If you don’t want to return
anything, use return by itself.

So far, our function has been anonymous. Anonymous functions have their
uses, but this one is really aching for a name:

hi = -> 'Hello, functions!'
console.log hi()

Once again, we get this response:

Hello, functions!

Naming a function in CoffeeScript just means assigning it to a variable. Note
that we could have written do hi instead of hi(). But in practice, do is usually
only used to create scope, especially during iteration. More on that in Scope
in Loops, on page 96.

But what’s the use of just returning a constant from a function? Not much.
So let’s make this function a bit more versatile:

greeting = (subject) -> "Hello, #{subject}!"
console.log greeting 'arguments'

'Hello, arguments!'

We’ve added an argument list, (subject), in front of the ->. (Note that parenthe-
ses are optional in function calls but not in argument lists, except when the
argument list is empty. For details, see Implicit Parentheses, on page 16.)
And we’ve used string interpolation to insert an expression into a string.

CoffeeScript’s interpolation syntax is similar to Ruby’s: "A#{expression}Z" is
equivalent to 'A' + (expression) + 'Z'. Interpolations only work in double-quoted
strings. (As a matter of style, I prefer to use single-quoted strings whenever
I’m not doing an interpolation so as to clearly convey that there’s no funny
business going on.)

Functions 101 • 14

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

A Tale of Two Function Declaration Syntaxes

In JavaScript, there are two ways of defining a function. Here’s one:

var cube1 = function(x) { return Math.pow(x, 3); };

Here’s another:

function cube2(x) { return Math.pow(x, 3); }

The main difference between these two is that if you were to call cube1 before it’s
defined, you would get an error, but if you called cube2 from earlier within its scope,
the interpreter would automatically look ahead to the function definition.

Due to a thorny issue in IE, CoffeeScript always generates variable-style function
declarations, like cube1. (The one exception is that “named” functions are generated
by the class keyword, as we’ll see in Section 4.3, Classes: Functions with Prototypes,
on page 63.) So don’t forget to define your functions before you call them!

Word to the wise: CoffeeScript’s + operator is sensitive to whitespace. So
string concatenation like this works fine:

squadron = 'Red'
xWing = squadron + 5 # 'Red5'

However, this doesn’t:

squadron = 'Red'
xWing = squadron +5 # TypeError

The problem is that squadron +5 compiles to squadron(+5). (The + prefix is a
handy way of converting strings to numbers.) Since squadron is a string, not
a function, this gives us an error. String interpolation prevents this gotcha:

squadron = 'Red'
xWing = "#{squadron}5" # 'Red5'

Accessing ’arguments’

This is as good a time as any to mention that you can access all arguments
to a function using JavaScript’s array-like arguments object, whether they’re
declared in the argument list or not. For example, we could’ve written our
greeting function like this:

greeting = -> "Hello, #{arguments[0]}!"

The arguments object is typically used when a function needs to accept a
varying number of arguments. Of course, this versatility comes at the price
of readability. It’s also a common source of JavaScript headaches, as arguments
acts like an array without supporting many of a normal array’s methods.

Functions 101 • 15

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Implicit Parentheses

The ability to omit parentheses from function calls is a double-edged sword. To use
this power wisely, you need to understand one simple rule: implicit parentheses
don’t close until the end of the expression.

Expecting CoffeeScript to understand what you’re trying to do is a common rookie
mistake. For instance, you might be surprised if you were to write the following:

console.log(Math.round 3.1, Math.round 5.2)

The output for this is 3. What happened to Math.round 5.2? The answer is clear when
we make the parentheses explicit:

console.log(Math.round(3.1, Math.round(5.2)))

Math.round(5.2) was evaluated, but then it was passed as an argument to the other
Math.round (which ignored it), rather than to console.log as intended.

To avoid confusion, I like to use parentheses for everything but the outermost
function call:

console.log Math.round(3.1), Math.round(5.2) # 3, 5

Fortunately, you rarely need to work with arguments directly in CoffeeScript,
thanks to a feature we’ll learn about in Section 2.6, Splats (...), on page 28.

Conditionals and Exceptions

Now, let’s write a numeric function for a change of pace:

cube = (num) -> Math.pow num, 3

Notice that the Math object, as part of the JavaScript standard, is identical
in CoffeeScript (and, for that matter, across all major browser and server-
side environments).

How about something a little more complex: a boolean test?

odd = (num) -> num % 2 is 1

% is the modulus operator; it gives us the remainder after division. The is
keyword compiles to JavaScript’s ===, the strict equality operator. (There
is no analog to JavaScript’s ==; see Strict Equality or Nothing, on page 17.)
Hence, odd will return true if the given number is a positive integer that is
not divisible by 2 and false otherwise. (Because % coerces its values to
numbers, odd will also return true for, say, the string '3'.)

Now in most settings this would be considered a perfectly good oddness
check. But let’s suppose that you’re writing a math library with very strict

Functions 101 • 16

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Strict Equality or Nothing

CoffeeScript’s is and == both compile to JavaScript’s ===; there’s no way to get the
loose, type-coercing equality check of JavaScript’s ==, which is frowned upon by
JSLint and others as the source of many “WTF?” moments. Let’s borrow an example
from http://wtfjs.com/2011/02/11/all-your-commas-are-belong-to-Array:

",,," == new Array(4) // true

There are also cases where == isn’t transitive:

'' == '0' // false
0 == '' // true
0 == '0' // true

To avoid these head-scratchers, you should perform type conversions explicitly.

specifications that state that if the function is given a value that isn’t
strictly a positive integer, then it should throw an exception. We can do that
by using conditionals, like so:

Download Functions/odd.coffee
odd = (num) ->

if typeof num is 'number'
if num is Math.round num
if num > 0

num % 2 is 1
else

throw "#{num} is not positive"
else
throw "#{num} is not an integer"

else
throw "#{num} is not a number"

Note the use of significant indentation to delimit both the function and each
conditional branch, rather than the curly braces of JavaScript. In Coffee-
Script, curly braces are used for one thing only: declaring JSON-style objects.
(More on that in the next chapter.)

Now if you try calling odd with anything but a positive integer, you’ll get
undefined (since throw statements have no return value). In order to actually
see the error message, you’ll need to use a try...catch block:

Download Functions/odd.coffee
try

odd 5.1
catch e

console.log e

5.1 is not an integer

Functions 101 • 17

http://wtfjs.com/2011/02/11/all-your-commas-are-belong-to-Array
http://media.pragprog.com/titles/tbcoffee/code/Functions/odd.coffee
http://media.pragprog.com/titles/tbcoffee/code/Functions/odd.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

We could improve the style of the odd function by simply checking each of
our three conditions in turn:

Download Functions/odd.coffee
odd = (num) ->

unless typeof num is 'number'
throw "#{num} is not a number"

unless num is Math.round num
throw "#{num} is not an integer"

unless num > 0
throw "#{num} is not positive"

num % 2 is 1

(If those lines weren’t so long, we’d use the postfix style, throw a unless b, rather
than the indented style.) In general, whenever conditions lead to throw or return,
we can simplify branching logic to a simple series check.

Of course, functions aren’t limited to just returning values and throwing
exceptions; they can also do stuff by modifying variables and running other
functions. (In functional programming parlance, these are known as side
effects.) These work just as you would expect from JavaScript:

count = 0
incrementCount = -> count++
incrementCount() # count is now 1

Now you know the basics of defining and calling functions in CoffeeScript.
But the devil’s in the details, so let’s look at one of the most important
details: Where are variables visible?

2.2 Scope: Where You See ’Em

So far, we haven’t worried about where variables live. Alas, we can’t always
be so cavalier. Consider this example:

age = 99
reincarnate = -> age = 0
reincarnate()
console.log "I am #{age} years old"

As you’d probably expect, the output is this:

I am 0 years old

However, we can try flipping the first and second lines around, like this:

reincarnate = -> age = 0
age = 99
reincarnate()
console.log "I am #{age} years old"

Scope: Where You See ’Em • 18

http://media.pragprog.com/titles/tbcoffee/code/Functions/odd.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Now hit Run and the code tells a very different story:

I am 99 years old

Strange—the reincarnate() call doesn’t have any effect! And what if we cut out
age = 99 altogether?

reincarnate = -> age = 0
reincarnate()
console.log "age = #{age}"

ReferenceError: age is not defined

We’ve got ourselves a “scope” issue! But what is scope? A variable’s scope
is its home, as defined by three rules:

1. Every function creates a scope, and the only way to create a scope is to
define a function.

2. A variable lives in the outermost scope in which an assignment has been
made to that variable.

3. Outside of its scope, a variable is invisible.

For instance, the scope of age in the first example was the global scope; in
the middle example, there was a variable named age in the global scope and
another in the reincarnate function’s scope; and in the last example, there was
just the reincarnate-scoped age. That’s why we got a ReferenceError from trying
to display age outside of reincarnate: no variable with that name exists outside
of that function.

CoffeeScript’s approach to scope is known as lexical scope, and it’s the same
as in JavaScript, except that a variable’s scope is defined explicitly in
JavaScript using the var keyword while CoffeeScript infers scope from assign-
ments. This not only saves your fingers precious effort, it also discourages
you from shadowing one variable by giving a different variable in a nested
scope the same name. See Shadowing: The Name’s the Same, on page 20.

A function’s scope is nested within the scope that the function itself lives
in. (Remember, functions are just variables.) This is another important thing
to understand about scope: it doesn’t depend on where or how the function
is being called. You can always tell which scope something lives in just by
eyeballing the code or by compiling to JavaScript and looking for var decla-
rations, which are always placed at the top of their scope:

Scope: Where You See ’Em • 19

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Shadowing: The Name’s the Same

There are only two ways to shadow a variable in CoffeeScript: One is, as we saw in
the second reincarnate example, to create a variable in a surrounding scope after a
variable with inner scope. The other way is with a function argument:

x = 5
triple = (x) -> x *= 3
triple x # 15
x # 5

Shadowing is generally considered bad style and should be avoided. Give your
variables distinct names, lest you sew the seeds of scope confusion.

singCountdown = (count) ->
singBottleCount = (specifyLocation) ->

locationStr = if specifyLocation then 'on the wall' else ''
bottleStr = if count is 1 then 'bottle' else 'bottles'
console.log "#{count} #{bottleStr} of beer #{locationStr}"

singDecrement = ->
console.log "Take one down, pass it around"
count--

singBottleCount true; singBottleCount false
singDecrement(); singBottleCount true
if count isnt 0 then singCountdown count

This example yields the following (omitting everything but the functions that
create scope and the vars that inhabit them):

var singCountdown;
singCountdown = function(count) {

var singBottleCount, singDecrement;
singBottleCount = function(specifyLocation) {

var bottleStr, locationStr;
// ...

}
// ...

}

You might be wondering, “How do I give a variable a scope without making
an assignment?” The answer is, you don’t. Instead, you make an assignment,
traditionally with null or some more sensible initial value. Here’s an example:

obj = null
initializeObj = ->

obj = ... # create object with superpowers
window.onload = initializeObj

That does it for our discussion of scope in CoffeeScript. And now for some-
thing completely different: this.

Scope: Where You See ’Em • 20

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

2.3 Context (or, “What Is ’this’?”)

Scope and context are kissing cousins, but don’t get ’em mixed up. While
scope is about which variable an identifier is referring to, context (also known
as the receiver) is about the this keyword—and its handy CoffeeScript
shorthand, @.

JavaScript and CoffeeScript newcomers often find this baffling. Used rightly,
it feels like magic. Used wrongly, it may be unrivaled as a source of errors.
No doubt some of the confusion stems from the word itself; people expect
this to refer to “this object.” Instead, you should think of it as “this context.”
And as we’ll soon see, the context (aka this/@) can be something different
every time a function is called.

(Before we go on, I should note that using the term context to describe this,
while popular, is not standard. Some frown on it because the JavaScript
specification defines something called execution context, which is related
but different. Unfortunately, there is no other universally agreed-upon term
for the value of this, so throughout this book, I’ll continue to refer to it as
the context.)

Let’s go through some examples using this simple function:

Download Functions/setName.coffee
setName = (name) -> @name = name

Here, name and @name are totally different variables: name (which we could
call anything, really) is a local variable, one that will never be visible outside
of the function, while @name (shorthand for this.name) is a property of the
context.

The main purpose of context is to give an object’s methods (functions at-
tached as properties) a way of referring to the object they’re being called on:

Download Functions/setName.coffee
cat = {}
cat.setName = setName
cat.setName 'Mittens'
console.log cat.name # 'Mittens'

When we call cat.setName, we’re calling setName with the cat object as its context;
thus this (or @) refers to the cat, and @name refers to cat.name. The function
itself hasn’t changed. We could call the following:

setName 'Mr. Mistoffelees'

And it would have no effect on cat.

Context (or, “What Is ’this’?”) • 21

http://media.pragprog.com/titles/tbcoffee/code/Functions/setName.coffee
http://media.pragprog.com/titles/tbcoffee/code/Functions/setName.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

We can invoke a function in a particular context without attaching the
function to that object by using the call or apply methods, which all functions
have. (If you’re fuzzy on how properties work in JavaScript or surprised to
learn that functions are objects, then you may want to skip ahead to Section
3.1, Objects as Hashes, on page 37 and then come back.) apply takes a context
and an array of arguments to pass to the function:

Download Functions/setName.coffee
pig = {}
setName.apply pig, ['Babe']
console.log pig.name # 'Babe'

call works the same way, except that it takes individual arguments rather
than a single array. So the equivalent of the previous would be this:

setName.call pig, 'Babe'

In practice, apply is more commonly used than call because it’s more versatile:
call only lets you change the context of a normal function call, while apply
lets you change the context and pass in an arbitrary number of arguments.

You can use call and apply to “borrow” one object’s methods and use them
on another:

Download Functions/setName.coffee
horse = {}
cat.setName.apply horse, ['Mr. Ed']
console.log horse.name # 'Mr. Ed'

Here, it doesn’t matter that we’re using cat.setName instead of setName: they’re
the same function.

Finally, one last way of giving a function a context is with new, which creates
a new object using the function as a constructor:

Download Functions/setName.coffee
Dog = setName # By convention, constructors are capitalized
dog1 = new Dog('Jimmy')
dog2 = new Dog('Jake')
console.log dog1.name # 'Jimmy'
console.log dog2.name # 'Jake'

The new keyword says, “Don’t return the result of the function; instead,
create a new object, run the function in that object’s context, and then return
the object.” (We can also give the object created by new additional properties
using a prototype, as we’ll see in Section 4.2, The Power of Prototypes, on
page 61.) Because the new keyword sets the new Dog as the context, @name
points to the new dog’s name property.

Context (or, “What Is ’this’?”) • 22

http://media.pragprog.com/titles/tbcoffee/code/Functions/setName.coffee
http://media.pragprog.com/titles/tbcoffee/code/Functions/setName.coffee
http://media.pragprog.com/titles/tbcoffee/code/Functions/setName.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

If a function isn’t called as a method and you don’t use the new keyword or
call/apply, then the context is the global object. We’ll learn more about the
global context in Section 4.1, Modules: Splitting Up Apps, on page 60; for
now, just remember that it’s generally a bad idea to use this when it’s
pointing at the global object:

Download Functions/setName.coffee
setName 'Lulu'
console.log name # 'Lulu'
console.log @name # undefined

So, you see that context is determined purely by how a function is called;
unlike scope, it has nothing to do with where the function is defined. (Of
course, we’d often like for the context to be determined by where the function
is defined. Fortunately, there’s a clever technique that lets us effectively do
this, one we’ll meet in Bound Functions: 'this' Means 'this', on page 23.)

To review, here are the CoffeeScript rules of context in a nutshell, with ear-
lier rules taking precedence over later ones:

1. When the new keyword is put in front of a function call, its context is
the new object.

2. When a function is called with call or apply, the context is the first argu-
ment given.

3. Otherwise, if a function is called as an object property (obj.func) or
obj['func']), it runs in that object’s context.

4. If none of the above apply, then the function runs in the global context.

We’ll learn more about the global context in Section 4.1, Modules: Splitting
Up Apps, on page 60.

Bound Functions: ’this’ Means ’this’

Sometimes you want a function to run in the current context no matter how
it’s called. This is especially common with event callbacks. Let’s say that
you want someone to leave a message in your voicemail array (bound to the
current context). Then you might write something like this:

callback = (message) -> @voicemail.push message

Ah, but of course you realize that when callback is called without the relevant
object, this will simply refer to the global object—or to whichever context the
other library sets via call or apply. Isn’t there any way to make this always
point to the same object, no matter how the function is called?

Context (or, “What Is ’this’?”) • 23

http://media.pragprog.com/titles/tbcoffee/code/Functions/setName.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

JavaScript lets you do that, but there’s a lot of boilerplate code involved (see
How Does => Work?, on page 25, though it’s worth mentioning that
ECMAScript 5, a standard supported by the latest generation of browsers,
provides a much simpler bind method on the Function prototype). Thankfully,
CoffeeScript makes binding a function to the current context as easy as a
single character change: => instead of ->. We call => the “bound function
operator” or, less formally, the “fat arrow.”

So our callback function becomes this:

callback = (message) => @voicemail.push message

Now we can relax, assured that the meaning of this is the same within the
function as it is where the function is defined, no matter where it’s called
from!

You might wonder why you shouldn’t just always use => instead of ->. There
are two reasons. First, the binding code leads to some small overhead in
both file size and execution time and is usually unnecessary. But more
importantly, while the chameleon-like nature of context is often confusing,
it can also allow for very elegant code. For instance, many libraries pass
critical information to callback functions through context. Here’s a simple
example (one that will make more sense in Chapter 5, Web Interactivity with
jQuery, on page 75):

$('#clickToHide').click -> $(this).hide()

Rather than strictly using either normal functions or bound functions, you
need to think carefully each time you define a function that uses this/@
about what the context should mean.

That’s it for scope and context—consider yourself a master of function se-
mantics! The next couple of sections will cover some helpful syntactic sugars
before we finally tackle the first iteration of our game project.

2.4 Property Arguments (@arg)

Remember that function we defined just to set a property on its context
object to the value of an argument?

setName = (name) -> @name = name

Well, it turns out CoffeeScript offers a handy shorthand for this:

setName = (@name) -> # no code required!

Property Arguments (@arg) • 24

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

How Does => Work?

We could write callback = (message) => @voicemail.push message in JavaScript like so:

var callback;
① callback = (function(__this) {
② var __func = function(message) {

return this.voicemail.push(message);
};

③ return function() {
return __func.apply(__this, arguments);

};
④ })(this);

① ④

The outermost function takes the current context, this, as an argument called
__this.

②

__func contains the code of the function we want to bind to the current context.

③

The anonymous function defined here is what becomes callback. So whenever
callback is called, its arguments are passed to __func, which is run in the __this
scope, and __func’s result is returned.

Notice that the context given to callback itself is never used, and __func is never exposed
to the outside world, ensuring that it’s always called in the context in which callback
was defined.

In practice, CoffeeScript uses a helper function named __bind, but the underlying
technique is the same. => may be CoffeeScript’s most powerful shorthand.

Quite simply, when @ precedes the name of an argument to a function, that
function automatically makes the assignment from the argument to the
property with that name on the context object, this.

This is especially great for constructors, which we’ll be up to our knees in
when we get to Chapter 4, Modules and Classes, on page 59. It’s common
to pass four or five arguments to a constructor just to set initial properties
on the instance object. By using the @argument syntax instead, you save that
many lines of code. Nice.

2.5 Default Arguments (arg =)

Let’s say that you have a function where one of its arguments is going to
have one particular value most of the time, like this:

ringFireAlarm = (isDrill) ->
it's pretty much always a drill
...

Default Arguments (arg =) • 25

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Wouldn’t it be nice if ringFireAlarm() were shorthand for the much more common
ringFireAlarm true? Well, we could do that by writing this:

ringFireAlarm = (isDrill) ->
isDrill = true unless isDrill?
...

Here unless (expression) is a shorthand for if not (expression). The ? in isDrill? is the
existential operator, and it’s shorthand for checking that the given value (1)
exists in this scope and (2) isn’t undefined or null. In your head, x? should read
as “x exists.”

The existential operator can also be placed between two variables: a ? b
returns a if a?, and b otherwise. And it can be combined with = to form a
compound assignment operator: c ?= d is shorthand for c = d unless c?. You
can read that as, “Let d be the default value for c.”

ringFireAlarm = (isDrill) ->
isDrill ?= true
...

Of course, as you probably inferred from the section heading, there’s an
even more succinct way of doing this:

ringFireAlarm = (isDrill = true) ->
...

“So why,” you might ask, “did you spend all that time talking about the ex-
istential operator?” There are two reasons. First, the existential operator is
sweet. Second, the behavior of default arguments in CoffeeScript is somewhat
different from that of other programming languages like Ruby, Python, and
PHP. In those languages, the number of arguments passed to the function
is what matters—the isDrill = true assignment would only be carried out if
ringFireAlarm was called with no arguments. By contrast, CoffeeScript uses
the existence operator behind the scenes. This means that explicitly passing
null or undefined is the same as omitting the argument altogether.

This can lead to unpleasant surprises if you’re not careful, but it’s also more
flexible. You can have an argument with several default values, and callers
can choose to use the defaults for any subset of them, like so:

chooseMeals = (breakfast = 'waffles', lunch = 'gyros', dinner = 'pizza') ->
...

chooseMeals null, 'burrito', null # not a gyro fan

You can, of course, implement the more conventional default argument be-
havior by making the assignments conditional on arguments.length. But if you

Default Arguments (arg =) • 26

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Getting Truthy with ’or=’

You’re likely to see someone write the following:

a or= b

This (or it’s equivalent, a ||= b) is a way of making b the default value for a. How, ex-
actly, does this differ from a ?= b?

The answer has to do with “truthiness.” In CoffeeScript (as in JavaScript), all values
are implicitly coerced to booleans by the boolean logic operators, && and || (known
as and and or under CoffeeScript style), as well as if. Most values become true, while
a handful—notably null, undefined, 0, and the empty string—become false.

This loose, flexible approach to boolean logic carries over to the results of boolean
operators. While some languages would just return true or false from the statement
a or b, CoffeeScript (like JavaScript) returns a if a is truthy and returns b otherwise.
(x and y returns y if both are truthy, x if both are falsy, and the falsy one if only one
is falsy.)

This gives us lots of useful shortcuts—including a = a or b (typically shortened to a
or= b) as a way of saying “set a to b if the value of a is falsy.” While not quite as handy
as ?=, or= is a good friend to have.

find yourself doing so, ask yourself whether you really need to accept null as
a value. How about false or NaN or even a custom type instead?

There is one more detail worth mentioning—you can use arbitrary expres-
sions as default arguments, though this generally isn’t recommended. If
you do so, the expression will be executed from whatever context the function
is being called in, before any expression in the function body and only if the
assignment is made. In other words, the following two expressions are
exactly equivalent. Here’s the first way:

dontTryThisAtHome = (noArgNoProblem = @iHopeThisWorks()) ->
...

Here’s the other way:

dontTryThisAtHome = (noArgNoProblem) ->
noArgNoProblem ?= @iHopeThisWorks()
...

There’s just one last feature to talk about before we get to our first project,
and it’s a humdinger. Never before has a single ellipse done so much…

Default Arguments (arg =) • 27

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

2.6 Splats (...)

Taking a varying number of arguments is both easy and hard in JavaScript:
it’s easy because every argument passed to a function (regardless of the
number in the function’s declaration) is available from the arguments object,
and it’s hard because arguments doesn’t support standard Array methods like
slice and shift.

Fortunately, CoffeeScript lets you convert any range of arguments to an
array automatically. Just add an ellipsis, ... (also known as “the splat”), to
the end of any argument name:

refine = (wheat, chaff...) ->
console.log "The best: #{wheat}"
console.log "The rest: #{chaff.join(', ')}"

The splat here means “take every argument after the first one, wheat, and
combine them into an array, chaff.” Calling refine with a list of four arguments
results in the following:

refine 'great', 'not bad', 'so-so', 'meh'

The best: great
The rest: not bad, so-so, meh

If just one argument is given, or if none are, then chaff will just be an empty
array.

A splatted argument doesn’t have to go at the end of an argument list. The
CoffeeScript compiler is smart about determining the appropriate arguments
to put in the array:

sandwich = (beginning, middle..., end) ->
...

Nonsplatted arguments always get filled in first. So if sandwich is called with
only two arguments, those will become beginning and end. Only when there
are three or more arguments is there a middle. Splats soak up any and all
extra arguments.

Even if the splat comes first, the plain arguments take priority:

spoiler = (filler..., theEnding) -> console.log theEnding
spoiler 'Darth Vader is Luke\'s father!'

Darth Vader is Luke's father!

Splats (...) • 28

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Of course, it only makes sense to have one splatted argument in a given
function. Otherwise, the splats would have to duke it out over how to split
the arguments amongst themselves.

It’s worth mentioning that splats can also be used to divvy up arrays on the
fly without the use of a function. Go ahead and launch the REPL (just run
coffee with no arguments, remember?) and play with this feature a little:

coffee> birds = ['duck', 'duck', 'duck', 'duck', 'goose!']
coffee> [ducks..., goose] = birds
coffee> ducks
duck,duck,duck,duck

We’ll learn more about this syntax in Section 3.6, Pattern Matching (or, De-
structuring Assignment), on page 48.

In a function call, splats mean precisely the inverse of what they mean in
argument lists and pattern-matching assignments: they expand an array
into a series of arguments, rather than collapsing a series of arguments into
an array. Let’s go to the REPL again:

coffee> console.log 1, 2, 3, 4
1 2 3 4
coffee> arr = [1, 2, 3]
coffee> console.log arr, 4
[1, 2, 3] 4
coffee> console.log arr..., 4
1 2 3 4

As you might have guessed, this syntax uses apply (which we met in Section
2.3, Context (or, “What Is 'this'?”), on page 21) behind the scenes.

Hopefully this chapter has given you a lot to take in. Now it’s time for us to
put it all together with a small project, followed by a healthy helping of
brainteasers.

2.7 Project: 5x5 Input Parser

Remember our little word game idea (see Section 3.4, About the Example
Project: 5x5, on page xix)? Well, it’s time to turn it into a reality! Now, we
don’t know enough about hashes, arrays, and loops yet to implement a
fully working version (omissions we’ll rectify in Chapter 3, Collections and
Iteration, on page 37). Still, we can at least get our feet wet by writing a
command-line prompt using Node.js.

But before we get started, we need to understand nonblocking IO. In most
languages, we could write something like this:

Project: 5x5 Input Parser • 29

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

input = getInput()
now process input...

The getInput function would wait for the user to type something and then
returns it. This is called blocking IO, because getInput would “block” the exe-
cution of our program until the input is available.

However, we can’t do this with Node because its IO is nonblocking (with the
exception of a handful of convenience functions whose names end with Sync).
Instead, we need to give Node a callback, which will get run whenever there’s
an input event. (We’ll go into more depth on Node’s event model in Section
6.3, Thinking Asynchronously, on page 93.) The closest analog to the above
in Node is this:

stdin.on 'data', (input) ->
now process input...

(The stdin object requires some initialization, which we’ll get to in a moment.)
If you’re used to blocking IO, the transition to nonblocking IO can be jarring.
But the benefits can be tremendous, because waiting for input (and, to a
lesser extent, output) has long been a major source of performance degrada-
tion and limited scalability. Neither of these is really a big issue in this
particular app, but designing applications to keep running while waiting
for input is a good habit to develop, and Node essentially forces you to. The
only way to write a blocking function is to create a native extension in C++.

So let’s think a little bit about the structure of our app. Here’s what we need
it to do:

1. Prompt for coordinates (x, y) for the first tile.

2. If the input is valid (two integers, each between 1 and the size of the
grid), then prompt for the coordinates of the second tile.

3. Validate the input again. If it passes, say we’re swapping the two tiles.
If it fails, explain why and offer a chance to try again.

Let’s start by “opening” the standard input:

Download Functions/5x5/prompt.coffee
stdin = process.openStdin()
stdin.setEncoding 'utf8'

Where did process come from? It’s part of the Node environment, one of the
few parts that doesn’t require a require statement to access. process provides
methods for getting command-line arguments, managing memory, and, of
course, dealing with standard IO.

Project: 5x5 Input Parser • 30

http://media.pragprog.com/titles/tbcoffee/code/Functions/5x5/prompt.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

If we run the app at this point (with coffee prompt.coffee), we get a never-ending
series of prompts. (Ctrl - c is your friend.) Each time you hit Return , Node
looks for a callback to pass that input to. Since we haven’t given it a callback,
nothing happens. Let’s fix that, shall we?

Download Functions/5x5/prompt.coffee
inputCallback = null
stdin.on 'data', (input) -> inputCallback input

The stdin.on 'data' call tells Node, “Each time a new line of input comes in,
pass it to this function.” That function simply forwards the input to another
function, inputCallback. Or rather, inputCallback will be a function later—right
now it’s just null. Why are we doing this? Because this proxy function makes
it easy to change the callback behavior. The inputCallback = null line (where null
is arbitrary) tells the compiler to give the variable module-level scope, allow-
ing it to be modified outside of the anonymous function.

Note that if we tried to set multiple callbacks on stdin.on 'data', they would
simply “stack,” so each one would be called every time new input came in.
We could unbind the existing callback using stdin.removeListener if we stored
a reference to the listener, but that would entail a two-step process (unbind,
bind). Instead, we just change the value of inputCallback.

Our simple app will have two “states”: prompting for the coordinates of the
first tile and prompting for those of the second. Going into a state is a simple
matter of displaying a message and then setting inputCallback:

Download Functions/5x5/prompt.coffee
promptForTile1 = ->

console.log "Please enter coordinates for the first tile."
inputCallback = (input) ->

promptForTile2() if strToCoordinates input

When new input comes in, the callback checks with the not-yet-defined
strToCoordinates function; if it gives the go-ahead, we pass control to the mirror
image prompt for the second tile of the move:

Download Functions/5x5/prompt.coffee
promptForTile2 = ->

console.log "Please enter coordinates for the second tile."
inputCallback = (input) ->

if strToCoordinates input
console.log "Swapping tiles...done!"
promptForTile1()

Now, what’s this about validation? Well, first let’s write a simple test for
whether a (zero-indexed) x, y pair is on the grid or not:

Project: 5x5 Input Parser • 31

http://media.pragprog.com/titles/tbcoffee/code/Functions/5x5/prompt.coffee
http://media.pragprog.com/titles/tbcoffee/code/Functions/5x5/prompt.coffee
http://media.pragprog.com/titles/tbcoffee/code/Functions/5x5/prompt.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Download Functions/5x5/prompt.coffee
GRID_SIZE = 5
inRange = (x, y) ->

0 <= x < GRID_SIZE and 0 <= y < GRID_SIZE

GRID_SIZE is in all-caps to indicate that it’s a constant (a stylistic convention
for us humans, not the compiler). The function takes advantage of Coffee-
Script’s chained comparisons feature: 0 <= x < GRID_SIZE is shorthand for (0
<= x) and (x < GRID_SIZE).

Here’s another simple test for whether a number is an integer:

Download Functions/5x5/prompt.coffee
isInteger = (num) ->

num is Math.round(num)

Now let’s use these to make a magical string-to-coordinate converter, com-
plete with handy error messages:

Download Functions/5x5/prompt.coffee
strToCoordinates = (input) ->

halves = input.split(',')
if halves.length is 2

x = parseFloat halves[0]
y = parseFloat halves[1]
if !isInteger(x) or !isInteger(y)
console.log "Each coordinate must be an integer."

else if not inRange x - 1, y - 1
console.log "Each coordinate must be between 1 and #{GRID_SIZE}."

else
{x, y}

else
console.log 'Input must be of the form `x, y`.'

You might wonder how this works for the if conditions in the two inputCallback
implementations. Well, console.log returns undefined, which gets coerced to false
by condition checks, and any nonempty object gets coerced to true. So, we
either return {x, y} or we give an error message, and all our boolean needs
are taken care of for us.

Now there’s just one piece missing: we need to start in one of our states so
that inputCallback gets defined before it’s called:

Download Functions/5x5/prompt.coffee
console.log "Welcome to 5x5!"
promptForTile1()

And that’s it! Run prompt.coffee to try it for yourself. It should look like Figure
3, Playing with our command-line prompt, on page 33.

Project: 5x5 Input Parser • 32

http://media.pragprog.com/titles/tbcoffee/code/Functions/5x5/prompt.coffee
http://media.pragprog.com/titles/tbcoffee/code/Functions/5x5/prompt.coffee
http://media.pragprog.com/titles/tbcoffee/code/Functions/5x5/prompt.coffee
http://media.pragprog.com/titles/tbcoffee/code/Functions/5x5/prompt.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Figure 3—Playing with our command-line prompt

Hopefully you’ve developed an appreciation for the power and syntactic ease
of CoffeeScript functions. In the next chapter, we’ll learn about working with
objects and arrays, and we’ll turn our little experiment in standard IO into
a full-fledged game.

2.8 You’ve Done Well, Young Padawan

It’s safe to say that you now know more about CoffeeScript than 99.999
percent of the Earth’s population. You’ve learned how to define, call, and
return values from functions. You’ve also learned that functions create
scope, and that the context variable this is a fickle creature that depends on
how the function is called—unless the function is bound to the context it’s
defined in by being defined with =>.

You’ve also sampled a smorgasbord of CoffeeScript’s other features: if/unless,
try...catch, default argument values, and property arguments among them.
Then we used those features to write a simple command-line app that runs
on Node.js.

You’ve Done Well, Young Padawan • 33

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

There are only two areas of CoffeeScript that we haven’t touched yet: collec-
tions (objects and arrays) and iteration (loops). By a happy coincidence,
those are the subject of the next chapter.

But before we go on, test your knowledge with the following exercises. You
weren’t thinking of skipping them, were you? Trust me: they’ll save you from
pain in the future.

2.9 Exercises

1. The following function will remove all elements from the given array and
return the result of the splice, which in this case will be a copy of the
original array. (We’ll learn more about that particular function in Slicing
and Splicing, on page 42.)

clearArray = (arr) ->
arr.splice 0, arr.length

How would I make clearArray return the cleared array instead? How would
I make it return nothing at all?

(While this is a trivial example, marking functions as returning nothing
often allows the CoffeeScript compiler to generate more efficient output,
especially when loops are involved.)

2. Write a function called run that takes a function as its first argument
and passes all additional arguments to the called function. That is, run
func, a, b should be equivalent to func(a, b). Hint: This shouldn’t take more
than one line.

3. Implicit parentheses always go to the end of the expression but not
necessarily to the end of the line. Find a case where implicit parentheses
fall short of the end of the line.

4. When you use explicit parentheses in a function call, CoffeeScript doesn’t
allow any whitespace after the function name. For instance, f (a, b) is a
syntax error. Can you think of a reason why this rule is in place? (Hint:
What does f (g) h mean?)

5. What is the context of the function call foo.bar.baz()? What about @hoo()?
@hoo.rah()?

6. x refers to a variable that obeys scoping rules, while @x refers to a variable
that obeys context rules. The two will never be equivalent—they may
reference the same object, but writing x = y would not affect @x and vice
versa.) But what.x and @x can be equivalent. If they are, then what is
what?

Exercises • 34

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

To find the answer, add a very short line to this code that will generate
the output “quantum entanglement”:

xInContext = ->
console.log @x

what = {x: 'quantum entanglement'}

7. Will this code work?

x = true
showAnswer = (x = x) ->
console.log if x then 'It works!' else 'Nope.'

showAnswer()

Explain why or why not.

Exercises • 35

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

CHAPTER 3

Collections and Iteration
In the last chapter, we mastered functions. Now it’s time to start applying
those functions to collections of data.

We’ll start by looking at objects in a new light as all-purpose storage. Then
we’ll learn about arrays, which give us a more ordered place to save our
bits. From there, we’ll segue into loops, the lingua franca of iteration. We’ll
also learn about building arrays directly from loops using comprehensions
and about extracting parts of arrays using pattern matching. Finally, we’ll
complete the command-line version of 5x5 that we started in the last
chapter and recap what we’ve learned with a fresh batch of exercises.

3.1 Objects as Hashes

Let’s start by reviewing what we know about objects in JavaScript and then
check out the syntactic additions that CoffeeScript provides.

Objects 101: A JavaScript Refresher

Every programming language worth its bits has some data structure that
lets you store arbitrary named values. Whether you call them hashes, maps,
dictionaries, or associative arrays, the core functionality is the same: you
provide a key and a value, and then you use the key to fetch the value.

In JavaScript, every object is a hash. And just about everything is an object;
the only exceptions are the primitives (booleans, numbers, and strings), and
a few special constants like undefined and NaN.

The simplest object can be written like this:

obj = new Object()

Or (more commonly) you can use JSON-style syntax:

obj = {}

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

In JSON, objects are denoted by {}, arrays by []. Note that JSON is a subset
of JavaScript and can usually be pasted directly into CoffeeScript code. (The
exception is when the JSON contains indentation that might be misinter-
preted by the CoffeeScript compiler.)

But there are plenty of other ways of creating objects. In fact, we created a
ton of them in the last chapter, because all functions are objects.

There are two ways of accessing object properties: dot notation and bracket
notation. Dot notation is simple: obj.x refers to the property of obj named x.
Bracket notation is more versatile: any expression placed in the brackets is
evaluated and converted to a string, and then that string is used as the
property name. So obj['x'] is always equivalent to obj.x, while obj[x] refers to
the property whose name matches the (stringified) value of x.

Usually you want to use dot notation if you know a property’s name in
advance and bracket notation if you need to determine it dynamically.
However, since property names can be arbitrary strings, you might some-
times need to use bracket notation with a literal key:

symbols.+ = 'plus' # illegal syntax
symbols['+'] = 'plus' # perfectly valid

We can create objects with several properties at once using JSON-style
constructs, which separate keys from values using : like so:

father = {
name: 'John',
daughter: {

name: 'Jill'
},
son: {

name: 'Jack'
}

}

Note that while curly braces have many uses in JavaScript, their only pur-
pose in CoffeeScript is to declare objects.

Quotes are optional around the keys as long as they obey standard variable
naming rules; otherwise, single- or double-quotes can be used:

symbols = {
'+': 'plus'
'-': 'minus'

}

Note that string interpolation is not supported in hash keys.

Objects as Hashes • 38

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Streamlined JSON

CoffeeScript takes JSON and distills it to its essence. While full-blown JSON
is perfectly valid, significant whitespace can be used in place of much of the
“symbology”: commas are optional between properties that are separated
by new lines, and, best of all, curly braces are optional when an object’s
properties are indented. That means that the JSON above can be replaced
with something more YAML-like:

father =
name: 'John'
daughter:

name: 'Jill'
son:

name: 'Jack'

You can also use this streamlined notation inline:

fellowship = wizard: 'Gandalf', hobbits: ['Frodo', 'Pippin', 'Sam']

This code is equivalent to the following:

fellowship = {wizard: 'Gandalf', hobbits: ['Frodo', 'Pippin', 'Sam']}

The magic here is that every time the CoffeeScript compiler sees :, it knows
that you’re building an object. This technique is especially handy when a
function takes a hash of options as its last argument:

drawSprite x, y, invert: true

Same-Name Key-Value Pairs

One handy trick that CoffeeScript offers is the ability to omit the value from
a key-value pair when the value is a variable named by the key. For instance,
the following two pieces of code are equivalent. Here’s the short way:

delta = '\u0394'
greekUnicode = {delta}

This is a little longer:

delta = '\u0394'
greekUnicode = {delta: delta}

(Note that this shorthand only works with explicit curly braces.) We’ll dis-
cover a common use for this trick in Section 3.6, Pattern Matching (or, De-
structuring Assignment), on page 48.

Objects as Hashes • 39

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Soaks: ’a?.b’

Before we move on to arrays, there’s one last CoffeeScript feature you should
be aware of when accessing object properties: the existential chain operator,
which has come to be known as the “soak.”

Soaks are a special case of the existential operator we met in Section 2.5,
Default Arguments (arg =), on page 25. Recall that a = b ? c means “Set a to b
if b exists; otherwise, set a to c.” But let’s say that we want to set a to a
property of b if b exists. A naïve attempt might look like this:

a = b.property ? c # bad!

The problem? If b doesn’t exist when this code runs, we’ll get a ReferenceError.
That’s because the code only checks that b.property exists, implicitly assuming
that b itself does.

The solution? Put a ? before the property accessor:

a = b?.property ? c # good

Now if either b or b.property doesn’t exist, a will be set to c. You can chain as
many soaks as you like, with both dots and square brackets, and even use
the syntax to check whether a function exists before running it:

cats?['Garfield']?.eat?() if lasagna?

In one line, we just said that if there’s lasagna and if we have cats and if
one is named Garfield and if Garfield has an eat function, then run that
function!

Pretty cool, right? But sometimes the universe is a little bit more orderly
than that. And when I think of things that are ordered, a very special kind
of object comes to mind.

3.2 Arrays

While you could use any old object to store an ordered list of values, arrays
(which inherit the properties of the Array prototype) offer you several nice
features.1

Arrays can be defined using JSON-style syntax:

mcFlys = ['George', 'Lorraine', 'Marty']

This is equivalent to the following:

mcFlys = new Array()

1. http://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array

Arrays • 40

http://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

mcFlys[0] = 'George'
mcFlys[1] = 'Lorraine'
mcFlys[2] = 'Marty'

Remember that all object keys are converted to strings, so arr[1], arr['1'], and
even arr[{toString: -> '1'}] are synonymous. (When an object has a toString method,
its return value is used when the object is converted to a string.)

Because arrays are objects, you can freely add all kinds of properties to an
array, though it’s not a common practice. It’s more common to modify the
Array prototype, adding special methods to all arrays. For instance, the Pro-
totype.js framework does this to make arrays more Ruby-like, adding
methods like flatten and each.

Ranges

Fire up the REPL, because the best way to get acquainted with CoffeeScript
range syntax—and its close friends, the slice and splice syntaxes, introduced
in the next section—is ('practice' for i in [1..3]).join(', ').

CoffeeScript adds a Ruby-esque syntax for defining arrays of consecutive
integers:

coffee> [1..5]
[1, 2, 3, 4, 5]

The .. defines an inclusive range. But often, we want to omit the last value;
in those cases, we add an extra . to create an exclusive range:

coffee> [1...5]
[1, 2, 3, 4]

(As a mnemonic, picture the extra . replacing the end value.) Ranges can
also go backward:

coffee> [5..1]
[5, 4, 3, 2, 1]

No matter which direction the range goes in, an exclusive range omits the
end value:

coffee> [5...1]
[5, 4, 3, 2]

This syntax is rarely used on its own, but as we’ll soon see, it’s essential to
CoffeeScript’s for loops.

Arrays • 41

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Slicing and Splicing

When you want to tear a chunk out of a JavaScript array, you turn to the
violent-sounding slice method:

coffee> ['a', 'b', 'c', 'd'].slice 0, 3
['a', 'b', 'c']

The two numbers given to slice are indices; everything from the first index
up to but not including the second index is copied to the result. You might
look at that and say, “That sounds kind of like an exclusive range.” And
you’d be right:

coffee> ['a', 'b', 'c', 'd'][0...3]
['a', 'b', 'c']

And you can use an inclusive range, too:

coffee> ['a', 'b', 'c', 'd'][0..3]
['a', 'b', 'c', 'd']

The rules here are slightly different than they were for standalone ranges,
though, due to the nature of slice. Notably, if the first index comes after the
second, the result is an empty array rather than a reversal:

coffee> ['a', 'b', 'c', 'd'][3...0]
[]

Also, negative indices count backward from the end of the array. While arr[-1]
merely looks for a property named '-1', arr[0...-1] means “Give me a slice from
the start of the array up to, but not including, its last element.” In other
words, when slicing arr, -1 means the same thing as arr.length - 1.

If you omit the second index, then the slice goes all the way to the end,
whether you use two dots or three:

coffee> ['this', 'that', 'the other'][1..]
['that', 'the other']
coffee> ['this', 'that', 'the other'][1...]
['that', 'the other']

CoffeeScript also provides a shorthand for splice, the value-inserting cousin
of slice. It looks like you’re making an assignment to the slice:

coffee> arr = ['a', 'c']
coffee> arr[1...2] = ['b']
coffee> arr
['a', 'b']

Arrays • 42

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Slicing Strings

Curiously, JavaScript provides strings with a slice method, even though its behavior
is identical to substring. This is handy, because it means you can use CoffeeScript’s
slicing syntax to get substrings:

coffee> 'The year is 3022'[-4..]
3022

However, don’t get too carried away—while slicing works fine on strings, splicing
doesn’t. Once a JavaScript string is defined, it can never be altered.

The range defines the part of the array to be replaced. If the range is empty,
a pure insertion occurs at the first index:

coffee> arr = ['a', 'c']
coffee> arr[1...1] = ['b']
coffee> arr
['a', 'b', 'c']

One important caveat: While negative indices work great for slicing, they
fail completely when splicing. The trick of omitting the last index works fine,
though:

coffee> steveAustin = ['regular', 'guy']
coffee> replacementParts = ['better', 'stronger', 'faster']
coffee> steveAustin[0..] = replacementParts
coffee> steveAustin
['better', 'stronger', 'faster']

That does it for slicing and splicing. You should now consider yourself a
wizard when it comes to extracting substrings and subarrays using ranges!
But ranges have another, even more fantastical use in the for...in syntax, as
we’ll see in the next section.

3.3 Iterating over Collections

There are two built-in syntaxes for iterating over collections in CoffeeScript:
one for objects and another for arrays (and other enumerable objects, but
usually arrays). The two look similar, but they behave very differently:

To iterate over an object’s properties, use this syntax:

for key, value of object
do things with key and value

This loop will go through all the keys of the object and assign them to the
first variable named after the for. The second variable, named value above,

Iterating over Collections • 43

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

’hasOwnProperty’ and ’for own’

JavaScript makes a distinction between properties “owned” by an object and prop-
erties inherited from its prototype. You can check whether a particular property is
an object’s own by using object.hasOwnProperty(key).

Because it’s common to want to loop through an object’s own properties, not those
it shares with all its siblings, CoffeeScript lets you write for own to automatically
perform this check and skip the properties that fail it. Here’s an example:

for own sword of Kahless
...

This is shorthand for the following:

for sword of Kahless
continue unless Kahless.hasOwnProperty(sword)
...

Whenever a for...of loop is giving you properties you didn’t expect, try using for own...of
instead.

is optional; as you might expect, it’s set to the value corresponding to the
key. So, value = object[key].

For an array, the syntax is a little different:

for value in array
do things with the value

Why have a separate syntax? Why not just use for key, value of array? Because
there’s nothing stopping an array from having extra methods or data. If you
want the whole shebang, then sure, use of. But if you just want to treat the
array as an array, use in—you’ll only get array[0], array[1], etc., up to array[ar-
ray.length - 1], in that order.

Both styles of for loops can be followed by a when clause that skips over loop
iterations when the given condition fails. For instance, this code will run
each function on obj, ignoring nonfunction properties:

for key, func of obj when typeof func is 'function'
func()

And this code only sets highestBid to bid when bid is greater.

highestBid = 0
for bid of entries when bid > highestBid

highestBid = bid

Of course, we could write continue unless condition at the top of these loops
instead; but when is a useful syntactic sugar, especially for one-liners. It’s

Iterating over Collections • 44

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

No Scope for ’for’

When you write for x of obj or for x in arr, you’re making assignments to a variable named
x in the current scope. You can take advantage of this by using those variables after
the loop. Here’s one example:

for name, occupation of murderMysteryCharacters
break if occupation is 'butler'

console.log "#{name} did it!"

Here’s another:

countdown = [10..0]
for num in countdown

break if abortLaunch()
if num is 0

console.log 'We have liftoff!'
else

console.log "Launch aborted with #{num} seconds left"

But this lack of scope can also surprise you, especially if you define a function
within the for loop. So when in doubt, use do to capture the loop variable on each
iteration:

for x in arr
do (x) ->
setTimeout (-> console.log x), 0

We’ll review this issue in the Section 3.9, Exercises, on page 56.

also the only way to prevent any value from being added to the list returned
by the loop, as we’ll see in Section 3.5, Comprehensions, on page 47.

for...in supports an additional modifier not shared by its cousin for...of: by.
Rather than stepping through an array one value at a time (the default), by
lets you set an arbitrary step value:

decimate = (army) ->
execute(soldier) for soldier in army by 10

Nor does the step value need to be an integer. Fractional values work great
in conjunction with ranges:

animate = (startTime, endTime, framesPerSecond) ->
for pos in [startTime..endTime] by 1 / framesPerSecond

addFrame pos

And you can use negative steps to iterate backward through a range:

countdown = (max) ->
console.log x for x in [max..0] by -1

Iterating over Collections • 45

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Note, however, that negative steps are not supported for arrays. When you
write for...in [start..end], start is the first loop value (and end is the last), so by step
with a negative value works fine as long as start > end. But when you write
for...in arr, the first loop index is always 0, and the last loop index is arr.length
- 1. So if arr.length is positive, by step with a negative value will result in an
infinite loop—the last loop index is never reached!

That’s all you need to know about for...of and for...in loops. The most important
thing to remember is that CoffeeScript’s of is equivalent to JavaScript’s in.
Think of it this way: values live in an array, while you have keys of an array.

of and in lead double lives as operators: key of obj checks whether obj[key] is
set, and x in arr checks whether any of arr’s values equals x. As with for...in
loops, the in operator should only be used with arrays (and other enumerable
entities, like arguments and jQuery objects). Here’s an example:

fruits = ['apple', 'cherry', 'tomato']
'tomato' in fruits # true
germanToEnglish: {ja: 'yes', nein: 'no'}
'ja' of germanToEnglish #true
germanToEnglish[ja]?

What if you want to check whether a nonenumerable object contains a
particular value? Let’s save that for an exercise.

3.4 Conditional Iteration

If you’re finding for...of and for...in a little perplexing, don’t worry—there are
simpler loops to be had. In fact, these loops are downright self-explanatory:

makeHay() while sunShines()

makeHay() until sunSets()

As you’ve probably guessed, until is simply shorthand for while not, just as unless
is shorthand for if not.

Note that in both these syntaxes, makeHay() isn’t run at all if the condition
isn’t initially met. There’s no equivalent of JavaScript’s do...while syntax, which
runs the loop body at least once. We’ll define a utility function for this in
the exercises for this chapter.

In many languages, you’ll see while true loops, indicating that the block is to
be repeated until it forces a break or return. CoffeeScript provides a shorthand
for this, the simply-named loop:

Conditional Iteration • 46

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

loop
console.log 'Home'
break if @flag is true
console.log 'Sweet'
@flag = true

Note that all loop syntaxes except loop allow both postfix and indented forms,
just as if/unless does. loop is unique in that it’s prefixed rather than postfixed,
like so:

a = 0
loop break if ++a > 999
console.log a # 1000

Though while, until and loop aren’t as common as for syntax, their versatility
should make them an invaluable addition to your repertoire.

Next up, we’ll answer an ancient Zen koan: What is the value of a list?

3.5 Comprehensions

In functional languages like Scheme, Haskell, and OCaml, you rarely need
loops. Instead, you iterate over arrays with operations like map, reduce,
and compact. Many of these operations can be added to JavaScript through
libraries, such as Underscore.js. 2 But to gain maximum succinctness and
flexibility, a language needs array comprehensions (also known as list
comprehensions).

Think of all the times you’ve looped over an array just to create another array
based on the first. For instance, to negate an array of numbers in JavaScript,
you’d write the following:

positiveNumbers = [1, 2, 3, 4];
negativeNumbers = [];
for (i = 0; i < positiveNumbers.length; i++) {

negativeNumbers.push(-positiveNumbers[i]);
}

Now here’s the equivalent CoffeeScript, using an array comprehension:

negativeNumbers = (-num for num in [1, 2, 3, 4])

You can also use the comprehension syntax with a conditional loop:

keysPressed = (char while char = handleKeyPress())

Do you see what’s going on here? Every loop in CoffeeScript returns a value.
That value is an array containing the result of every loop iteration (except

2. http://documentcloud.github.com/underscore/

Comprehensions • 47

http://documentcloud.github.com/underscore/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

those skipped by a continue or break or as a result of a when clause). And it’s
not just one-line loops that do this:

code = ['U', 'U', 'D', 'D', 'L', 'R', 'L', 'R', 'B', 'A']
codeKeyValues = for key in code

switch key
when 'L' then 37
when 'U' then 38
when 'R' then 39
when 'D' then 40
when 'A' then 65
when 'B' then 66

(Do you see why we needed to use parentheses for the one-liners, but we
don’t here? Also, you’re probably wondering about switch; it’ll become clearer
in Polymorphism and Switching, on page 66.)

Note that you can use comprehensions in conjunction with the for loop
modifiers, by and when:

evens = (x for x in [2..10] by 2)

isInteger = (num) -> num is Math.round(num)
numsThatDivide960 = (num for num in [1..960] when isInteger(960 / num))

List comprehensions are the consequence of a core part of CoffeeScript’s
philosophy: everything in CoffeeScript is an expression. And every expression
has a value. So what’s the value of a loop? An array of the loop’s iteration
values, naturally.

Another part of CoffeeScript’s philosophy is DRY: Don’t Repeat Yourself. In
the next section, we’ll meet one of my favorite antirepetition features.

3.6 Pattern Matching (or, Destructuring Assignment)

In JavaScript, assignment is a strict one-at-a-time affair. If you had a list
of values that you wanted to transfer to a list of variables, you’d probably
write a custom function. But in CoffeeScript, you can just write one line of
code:

[firstName, middleInitial, lastName] = ['Joe', 'T', 'Plumber']

This syntax, called array pattern matching, may look odd at first. The square
brackets on the left side of the assignment aren’t really creating an array,
after all. Instead, it’s just describing a “pattern” of variables that the array
on the right side fills in. So the line above is equivalent to this:

firstName = 'Joe'; middleInitial = 'T'; lastName = 'Plumber'

Pattern Matching (or, Destructuring Assignment) • 48

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

But array pattern matching isn’t just a pretty syntax for making multiple
assignments. For one thing, you can reference the same variable(s) on both
sides of the assignment, making swaps a one-line affair instead of a three-
line chore:

[newBoss, oldBoss] = [oldBoss, newBoss]

We can also use splats the same way that we used them in function defini-
tions in Section 2.6, Splats (...), on page 28:

[theBest, theRest...] = topStudents

If you think array pattern matching is great, you’ll love object pattern
matching. Say we want to pick out a few values from an object:

myRect =
x: 100
y: 200

{x: myX, y: myY} = myRect

Again, the “object” on the left side of the assignment isn’t really an object,
it’s a pattern, providing keys and variable names to match these keys. So
this is equivalent to the following:

myX = myRect.x; myY = myRect.y

This might not look like much of a gain, but remember (as we discussed in
Same-Name Key-Value Pairs, on page 39) how {x} is short for {x: x}? Well,
that works in patterns, too, which means that if you just want to copy rect.x
and rect.y to local variables named x and y, then all you have to write is this:

{x, y} = rect

Believe me, this syntax will change the way you read properties from objects
forever. To give another example, let’s say that we’re writing some tests using
Node’s assert module. Specifically, we want to use the assert.ok and assert.strictE-
qual methods. We can load them as variables called ok and strictEqual by writing
this:

{ok, strictEqual} = require 'assert'

One last tip—did I mention that array patterns and object patterns can be
nested inside of each other?

{languages: [favoriteLanguage, otherLanguages...]} = resume

This code translates as “Take resume.languages, assign its first entry to a vari-
able called favoriteLanguage, then assign the remaining entries to a new array
called otherLanguages.” Not bad for one line, right?

Pattern Matching (or, Destructuring Assignment) • 49

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Pattern matching is also known as destructuring assignment and is a part
of the JavaScript 1.7 standard (currently supported by the latest version of
Firefox). But you don’t have to wait for that standard to catch on—Coffee-
Script compiles each pattern to a series of simple assignments.

I know this chapter has thrown a lot at you, but now it’s time to pick up
the pieces and put them together for the first working version of our word
game. Don’t forget the exercises afterward—they’re a challenge, I promise.

3.7 Project: 5x5 Solitaire

Since we handled input in the last chapter, there are just a few things our
app has to do in order to be a full-fledged game. Let’s start with the simplest
pieces of the puzzle, then move on to the harder ones.

First things first: We’ll need some words. Fortunately, the word list used at
Scrabble tournaments, the Second Official Tournament and Club Word List
(known to die-hard Scrabblers as the OWL2) is publicly available. One version
of it is included with the book’s code.3

We’ll store this word list as an array. (Another data structure, such as a
binary tree, would yield more efficient lookups, but I’ll leave such optimiza-
tions in the reader’s capable hands.) But first, we need to access it through
Node’s file system (fs) module:

Download Collections/5x5/game.coffee
fs = require 'fs'
owl2 = fs.readFileSync 'OWL2.txt', 'utf8'

readFileSync simply reads the contents of a file into a string. The Sync suffix
means that, unlike most Node.js I/O functions, this one blocks our program’s
execution until it completes. If we had some work to do in the background
while the file is being read, then we’d use readFile with a callback instead,
allowing us to continue processing while the operating system loads the file
in the background.

Each line of our dictionary contains a word along with its definition and
sentence part, such as this:

OD a hypothetical force of natural power [n -S]

As fascinating as this additional information is, we won’t be using it. So let’s
use a simple regex to extract just the first word from each line:

3. From http://www.zyzzyva.net/wordlists.shtml

Project: 5x5 Solitaire • 50

http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://www.zyzzyva.net/wordlists.shtml
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Download Collections/5x5/game.coffee
wordList = owl2.match /^(\w+)/mg

Then we cut the word list down to just those words that could plausibly fit
on the grid:

Download Collections/5x5/game.coffee
wordList = (word for word in wordList when word.length <= GRID_SIZE)

where GRID_SIZE is a constant that we’ve set to 5. (Of course, we could have
done this more efficiently by tweaking our regex to only capture short words.)

Now we’ll define a function to check whether a given word is valid:

Download Collections/5x5/game.coffee
isWord = (str) ->

str in wordList

Simple, right? Recall that x in arr just tells us whether the value x is in the
array arr. (This differs from JavaScript’s in, whose CoffeeScript analog is of.)

Generating a random grid will be a little bit trickier. First we’ll need a way
of generating random letters with the right probability distribution:

Download Collections/5x5/game.coffee
Probabilities are taken from Scrabble, except that there are no blanks.
See http://www.hasbro.com/scrabble/en_US/faqGeneral.cfm
tileCounts =

A: 9, B: 2, C: 2, D: 4, E: 12, F: 2, G: 3, H: 2, I: 9, J: 1, K: 1, L: 4
M: 2, N: 6, O: 8, P: 2, Q: 1, R: 6, S: 4, T: 6, U: 4, V: 2, W: 2, X: 1
Y: 2, Z: 1

totalTiles = 0
totalTiles += count for letter, count of tileCounts

JavaScript hashes are unordered, so we need to make our own key array:
alphabet = (letter for letter of tileCounts).sort()

randomLetter = ->
randomNumber = Math.ceil Math.random() * totalTiles
x = 1
for letter in alphabet

x += tileCounts[letter]
return letter if x > randomNumber

And now we generate the grid using a nested array comprehension:

Download Collections/5x5/game.coffee
grid is a 2D array: grid[col][row], where 0, 0 is the upper-left corner
grid = for x in [0...GRID_SIZE]

for y in [0...GRID_SIZE]
randomLetter()

Project: 5x5 Solitaire • 51

http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

We’ll also want to pretty-print the grid (this is a word game, not Zork):

Download Collections/5x5/game.coffee
printGrid = ->

Transpose the grid so we can draw rows
rows = for x in [0...GRID_SIZE]

for y in [0...GRID_SIZE]
grid[y][x]

rowStrings = (' ' + row.join(' | ') for row in rows)
rowSeparator = ('-' for i in [1...GRID_SIZE * 4]).join('')
console.log '\n' + rowStrings.join("\n#{rowSeparator}\n") + '\n'

Finally, we get to scoring. We’ll start with a hash of Scrabble letter values
and an array for keeping track of words that have already been used:

Download Collections/5x5/game.coffee
Each letter has the same point value as in Scrabble.
tileValues =

A: 1, B: 3, C: 3, D: 2, E: 1, F: 4, G: 2, H: 4, I: 1, J: 8, K: 5, L: 1
M: 3, N: 1, O: 1, P: 3, Q: 10, R: 1, S: 1, T: 1, U: 1, V: 4, W: 4, X: 8,
Y: 4, Z: 10

moveCount = 0
score = 0
usedWords = []

Now for our actual scoring function. It takes a grid and the zero-indexed
coordinates of the two tiles that were swapped and relies on a wordsThroughTile
function that returns every word going through a particular tile of the grid:

Download Collections/5x5/game.coffee
scoreMove = (grid, swapCoordinates) ->

{x1, x2, y1, y2} = swapCoordinates
words = wordsThroughTile(grid, x1, y1).concat wordsThroughTile(grid, x2, y2)
moveScore = multiplier = 0
newWords = []
for word in words when word not in usedWords and word not in newWords

multiplier++
moveScore += tileValues[letter] for letter in word
newWords.push word

usedWords = usedWords.concat newWords
moveScore *= multiplier
{moveScore, newWords}

The wordsThroughTile function itself is trickier, since we need to go through a
point in a 2-D array in four different directions while ensuring we don’t go
out of range. Let’s look at the whole thing, and then I’ll break it down a bit:

Download Collections/5x5/game.coffee
wordsThroughTile = (grid, x, y) ->

strings = []

Project: 5x5 Solitaire • 52

http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

for length in [MIN_WORD_LENGTH..GRID_SIZE]
range = length - 1
addTiles = (func) ->
strings.push (func(i) for i in [0..range]).join ''

for offset in [0...length]
Vertical
if inRange(x - offset, y) and inRange(x - offset + range, y)

addTiles (i) -> grid[x - offset + i][y]
Horizontal
if inRange(x, y - offset) and inRange(x, y - offset + range)

addTiles (i) -> grid[x][y - offset + i]
Diagonal (upper-left to lower-right)
if inRange(x - offset, y - offset) and

inRange(x - offset + range, y - offset + range)
addTiles (i) -> grid[x - offset + i][y - offset + i]

Diagonal (lower-left to upper-right)
if inRange(x - offset, y + offset) and

inRange(x - offset + range, y + offset - range)
addTiles (i) -> grid[x - offset + i][y + offset - i]

str for str in strings when isWord str

The outer loop for length in [MIN_WORD_LENGTH..GRID_SIZE] iterates through all
game-level legal word sizes (in our case, from 2 to 5). We define an addTiles
function that calls a given function with each integer value i from 0 to length
- 1 inclusive and then combines the results (which are characters) as a single
string. The argument to addTiles is a function that, given i, returns the value
of the tile i steps from the starting point in a certain direction.

The inner loop, for offset in [0...length], is there because we want all words through
the given tile, not just those starting at it. For instance, in the vertical direc-
tion and when offset is 0, we get all the words going down from the given
tile; when offset is 1, we get all the words going down from the tile above
the given tile; and so on up to the edge of the grid.

Speaking of edges, those inRange checks ensure that both ends of a potential
word are within the grid. If those tests pass, we send a callback to addTiles
providing the tile value at each step i, and addTiles pushes the potential word
to our strings list. Those items in strings that pass the isWord test get returned
from the function.

(The use of function passing in addTiles may seem unnecessary, but it actu-
ally greatly simplified the wordsThroughTile function; in an earlier version, the
same loop and join code was repeated four times!)

Whew! Now to initialize the game. We’ll want to count words that are already
in the grid at the start as used, which we can do by performing scoreMove on
a “swap” of each tile with itself:

Project: 5x5 Solitaire • 53

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Download Collections/5x5/game.coffee
console.log "Welcome to 5x5!"
for x in [0...GRID_SIZE]

for y in [0...GRID_SIZE]
scoreMove grid, {x1: x, x2: x, y1: y, y2: y}

unless usedWords.length is 0
console.log """

Initially used words:
#{usedWords.join(', ')}

"""
console.log "Please choose a tile in the form (x, y)."

Finally, we plug in the input code from the last chapter, modifying our
prompts to actually work:

Download Collections/5x5/game.coffee
promptForTile1 = ->

printGrid()
console.log "Please enter coordinates for the first tile."
inputCallback = (input) ->

try
{x, y} = strToCoordinates input

catch e
console.log e
return

promptForTile2 x, y

Download Collections/5x5/game.coffee
promptForTile2 = (x1, y1) ->

console.log "Please enter coordinates for the second tile."
inputCallback = (input) ->

try
{x: x2, y: y2} = strToCoordinates input

catch e
console.log e
return

if x1 is x2 and y1 is y2
console.log "The second tile must be different from the first."

else
console.log "Swapping (#{x1}, #{y1}) with (#{x2}, #{y2})..."
x1--; x2--; y1--; y2--; # convert 1-based indices to 0-based
[grid[x1][y1], grid[x2][y2]] = [grid[x2][y2], grid[x1][y1]]
{moveScore, newWords} = scoreMove grid, {x1, y1, x2, y2}
unless moveScore is 0

console.log """
You formed the following word(s):
#{newWords.join(', ')}

"""
score += moveScore

moveCount++

Project: 5x5 Solitaire • 54

http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://media.pragprog.com/titles/tbcoffee/code/Collections/5x5/game.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Figure 4—Playing with our command-line prompt

console.log "Your score after #{moveCount} moves: #{score}"
promptForTile1()

That’s it! Run the game (coffee game.coffee), and you should see something like
Figure 4, Playing with our command-line prompt, on page 55.

Of course, this program is far from a masterpiece. On the front end, the in-
terface is a little…classical? And on the programmer side of things, the code
is awfully disorganized. We’ll be addressing the latter problem in the next
chapter, and then we’ll move on to use jQuery to turn our humble command-
line game into a much more sophisticated browser-based experience. Finally,
we’ll use a Node server-side app to add multiplayer support.

The great thing about CoffeeScript is that we can reuse its code in all of
these settings. Whether we’re running the game in a browser or on a server,
the code for scoring a move will remain the same. That convergence of client
and server has all kinds of practical uses—think of form validation, for one.
And with a thorough understanding of objects and loops, you’re well on
your way to mastering the language.

Project: 5x5 Solitaire • 55

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

3.8 Beyond the Basics

After you’ve completed the exercises below, you can call yourself a yellow
belt CoffeeScripter. How to get to black? Modules, grasshopper. While Cof-
feeScript gives us the power to express much with few words, some programs
need many words. Better to use many small files, each with a well-defined
purpose, than a few large files that make readers feel like rats in a maze.

3.9 Exercises

1. It’s common to use slice to copy an entire array:

coffee> original = ['Mary', 'Poppins']
coffee> copy = original[0..]
coffee> copy[0] = 'Sh' + copy[0][1..]
coffee> copy[1] = 'B' + copy[1][1..]
coffee> original.join ' '
Mary Poppins
coffee> copy.join ' '
Shary Boppins

Explain how copy = original[0..] differs from copy = original.

2. One subtle difference between CoffeeScript’s for...in loops and the C-style
for loops in JavaScript is illustrated by this code. Explain why this code
produces the following result:

once = ->
if once.hasRun

null
else

once.hasRun = true
[1, 2, 3]

console.log x for x in once()

1
2
3

3. What is the output of this code?

for x in [1, 2]
setTimeout (-> console.log x), 50

Bonus question: Does it matter if the timeout is 0?

For illumination, see Scope in Loops, on page 96.

4. Recall that 'foo' in arr will tell you whether the array arr contains the string
'foo' and whether 'bar' of obj will tell you if obj.bar exists. But how would you

Beyond the Basics • 56

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

check whether an arbitrary object contains a given value? Start with
this:

objContains = (obj, val) ->

5. Let’s say that we need to run a function at least once and then run it
again repeatedly until a condition is met. In C/Java/JavaScript, we can
write this:

do {
user.harangue()

} while (!user.paidInFull)

The direct CoffeeScript equivalent would be the following:

user.harangue()
user.harangue() until user.paidInFull

But this violates the sacred principle of DRY (Don’t Repeat Yourself).
Define a doAndRepeatUntil function that takes two functions (equivalent to
the loop body and the condition), so that we can instead write it this
way:

doAndRepeatUntil user.harangue, -> user.paidInFull

6. For the project in this chapter, we set MIN_WORD_LENGTH as a constant.
However, it makes more sense from a modularity standpoint to derive
this from the dictionary we load into the game. How would you do that
on one line using Math.min.apply and a list comprehension? (Math.min returns
the argument given with the lowest value, such as Math.min 15, 16, 23, 42,
5, 8 is 5.)

Exercises • 57

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

CHAPTER 4

Modules and Classes
In the preceding chapters, we learned how to make sentences out of the
verbs and nouns of CoffeeScript. But strings of sentences do not always an
elegant program make. What we need are higher-order abstractions. In
particular, we need a clean way of describing types of objects.

In classical object-oriented languages like C++, there’s a sharp distinction
between objects and classes: an object is an instance of a class, inheriting
its methods but storing its own data. Many dynamic languages, like Ruby,
blur that distinction by allowing an object’s methods to be modified at run-
time. JavaScript obliterates the distinction: there are no classes. There are
only prototypes, which make it easy for objects to share methods. For that
reason, JavaScript is sometimes described as a prototype-based language.

This dynamic approach to sharing methods is powerful but has a cost in
clarity. If you’re reading code in a strictly class-based language and you
want to find out which methods a particular object supports, you just have
to look at the code that defines that object’s class. But if you want to know
which methods a JavaScript object has (without running the code), you
have to track down every possible reference to that object or its prototype
anywhere in the application.

Several approaches have popped up over the years for organizing JavaScript
code into something resembling classes. Over time, a standard pattern
evolved. That pattern provides the basis for CoffeeScript’s class keyword. In
this chapter, we’ll learn how CoffeeScript classes work and then use them
to modularize our code for 5x5.

But before we get into the workings of CoffeeScript classes, we need to talk
a bit about how modules interact in CoffeeScript.

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

4.1 Modules: Splitting Up Apps

In a browser environment, JavaScript doesn’t care about files. No matter
how many files you may have, it’s just a bunch of lines. So, if two files in
an application happen to declare global-scope variables with the same name,
well, they’re just going to have to fight it out. May the best code win.

This is a huge problem for complex JavaScript apps. If a team is splitting
up a project, how can they be sure that they aren’t overwriting each other’s
variables? How can you be sure that open-source code you drop in doesn’t
conflict with your own?

The solution is namespacing. In JavaScript (and therefore CoffeeScript),
every function has its own namespace. A variable declared in a function is
never visible outside of that function. So, a common JavaScript convention
is to make each file a module by wrapping it in a function, which is immedi-
ately executed. Server-side environments like Node.js, which implement the
CommonJS specification, always treat each file as a separate module.

As mentioned in JavaScript, Under Wraps, on page 8, the CoffeeScript
compiler wraps each .coffee file in an anonymous function wrapper, unless
it’s invoked with the --bare flag. CoffeeScript also prevents you from declaring
global variables by mistake, which in JavaScript is as easy as forgetting the
var keyword. So the question is, how do you share data between modules?

The answer is you attach them to an existing global variable. One option is
to use the root object, which is the only object whose properties can be ref-
erenced without qualification. In a browser environment, the root object is
window. In Node, it’s global.

In fact, all of the globals you’re used to dealing with are actually properties
of the root object. For instance, parseInt is actually window.parseInt/global.parseInt,
and Math is window.Math/global.Math. Even the objects that define the built-in
types, like String, are actually window.String/global.String.

In JavaScript, attaching variables to the root object is easy—in fact, it’s
commonly done by mistake when the var keyword is omitted. In CoffeeScript,
on the other hand, you need to be explicit:

root = global ? window

file1.coffee
root.emergencyNumber = 911

file2.coffee
console.log emergencyNumber # '911'
emergencyNumber is root.emergencyNumber # true

Modules: Splitting Up Apps • 60

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

The first line defines root to be global if it exists, and window otherwise, ensuring
compatibility with both Node and browser environments.

Node has another special object called exports. Usually, you’ll want to use
that instead of global (more on that in Section 6.2, Modularizing Code with
'exports' and 'require', on page 92). I used global ? window in the example above
rather than exports ? window so that the code looks the same in every environ-
ment; an alternative would be to use a library, like RequireJS, that allows
you to modularize code the same way in every environment without using
objects like global and window that are available everywhere by default.1

Of course, it’s considered poor practice to put every little thing in the global
namespace. Instead, it’s much more natural to package variables into
cleanly referenced objects. Here’s an example:

root = global ? window
root.httpCodes =

movedPermanently: 301
pageNotFound: 404
serverError: 500

Once this module has run, other modules can reference httpCodes.pageNotFound,
for instance.

4.2 The Power of Prototypes

Before we move on to classes, it’s important to understand how prototypes
work. If you’re fluent in JavaScript, this section will just be a refresher.

A prototype is an object whose properties are shared by all objects that have
that prototype. An object’s prototype can usually be accessed using the
aptly-named prototype property, though there are exceptions.2

However, you can’t just go and write A.prototype = B. Instead, you need to use
the new keyword, which takes a function called a constructor and creates
an object that “inherits” the constructor’s prototype. Here’s a quick example:

Boy = -> # by convention, constructor names are capitalized
Boy::sing = -> console.log "It ain't easy being a boy named Sue"
sue = new Boy()
sue.sing()

Here, Boy::sing is shorthand for Boy.prototype.sing. The :: symbol is to prototype as
@ is to this.

1. http://requirejs.org/
2. http://javascriptweblog.wordpress.com/2010/06/07/understanding-javascript-

prototypes/

The Power of Prototypes • 61

http://requirejs.org/
http://javascriptweblog.wordpress.com/2010/06/07/understanding-javascript-prototypes/
http://javascriptweblog.wordpress.com/2010/06/07/understanding-javascript-prototypes/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Caution: Globals and Implicit Declarations

While you can get globals without referencing the root object, you can’t set them
that way. This is an easy mistake to make:

root = global ? window

file1.coffee
root.dogName = 'Fido'
dogName is root.dogName # true

file2.coffee
console.log dogName # undefined
dogName = 'Bingo'
dogName is root.dogName # false

Why is dogName undefined at the start of the second module? Because a variable
with the same name is assigned later on. CoffeeScript interprets that as a new
variable declaration, and all variable declarations in CoffeeScript are automatically
moved to the top of the scope.

So remember: always, always, always use the root object when setting a global
variable! Statements of the form x = y will never change the value of x in other
modules.

The output looks like this:

It ain't easy being a boy named Sue

This is the result because sue inherits the properties of Boy.prototype. Pretty
cool! But how does it work?

When we use new, several things happen: a new object is created, that object
is given the prototype from the constructor, and the constructor is executed
(in the new object’s context). So let’s say we want every new object to store
its name and announce the existing number of gifts:

Gift = (@name) ->
Gift.count++
@day = Gift.count
@announce()

Gift.count = 0
Gift::announce = ->

console.log "On day #{@day} of Christmas I received #{@name}"

gift1 = new Gift('a partridge in a pear tree')
gift2 = new Gift('two turtle doves')

Here’s the output:

On day 1 of Christmas I received a partridge in a pear tree
On day 2 of Christmas I received two turtle doves

The Power of Prototypes • 62

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Prototypes, Precedence, and ’hasOwnProperty’

When an object inherits properties from a prototype, changes to the prototype will
change the inherited properties as well:

Download Classes/Raven.coffee
Raven = ->
Raven::quoth = -> console.log 'Nevermore'
raven1 = new Raven()
raven1.quoth() # Nevermore

Raven::quoth = -> console.log "I'm hungry"
raven1.quoth() # I'm hungry

Properties attached directly to objects take precedence over prototype properties.
So we can remove that ambiguity by writing this:

Download Classes/Raven.coffee
raven2 = new Raven()
raven2.quoth = -> console.log "I'm my own kind of raven"
raven1.quoth() # I'm hungry
raven2.quoth() # I'm my own kind of raven

To check whether a property is attached to an object directly or inherited from a
prototype, use the hasOwnProperty function:

Download Classes/Raven.coffee
console.log raven1.hasOwnProperty('quoth') # false
console.log raven2.hasOwnProperty('quoth') # true

Each time the Gift constructor runs, it does four things: assigns the given
name to @name (using the argument shorthand), increments the count prop-
erty on the Gift constructor, copies that value to @day, and runs the @announce
function inherited from the prototype. The important thing to notice here
is that all of the functions on the new object run in the context of the object.

This is all well and good, but it’s a bit messy, isn’t it? Shouldn’t there be a
clearer way of distinguishing constructor properties (like Gift.count) from
prototype properties (like Gift::announce)? And of distinguishing constructors
from ordinary functions? Well, as a matter of fact, there is.

4.3 Classes: Functions with Prototypes

CoffeeScript’s class declaration syntax looks just like its object declaration
syntax. That’s no coincidence; when you’re defining a class, you’re defining
an object. Specifically, you’re defining a prototype. The only class property
that isn’t part of the prototype is the constructor function, if you define one.

Let’s look at an example, illustrating the well-known fact that the trouble a
tribble makes is directly proportional to the number of existing tribbles:

Classes: Functions with Prototypes • 63

http://media.pragprog.com/titles/tbcoffee/code/Classes/Raven.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/Raven.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/Raven.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Download Classes/Tribble.coffee
class Tribble

constructor: ->
@isAlive = true
Tribble.count++

Prototype properties
breed: -> new Tribble if @isAlive
die: ->

Tribble.count-- if @isAlive
@isAlive = false

Class-level properties
@count: 0
@makeTrouble: -> console.log ('Trouble!' for i in [1..@count]).join(' ')

There’s a lot of new syntax here. Let’s go through this one piece at a time.

Each time a new tribble is created, Tribble.count is increased by one. (We can
call it @count here because the value of this in the class body is the class itself.)
When Tribble.makeTrouble() is called, it’ll display “Trouble!” Tribble.count times.

Let’s test this:

Download Classes/Tribble.coffee
tribble1 = new Tribble
tribble2 = new Tribble
Tribble.makeTrouble() # "Trouble! Trouble!"

Notice that Tribble.count is referred to as @count in the Tribble class context but
not within Tribble methods. This is a little baffling at first, but remember that
there are three objects we’re dealing with here: the Tribble object itself (which
is actually the constructor function), Tribble.prototype, and the Tribble instance.
By default, Tribble properties (other than constructor) are attached to the proto-
type. When we use the @ prefix, we’re insisting that we want to attach the
property to the class object itself.

Because the functions attached to the prototype are invoked in the context
of the individual object (as is the constructor), variables prefixed with @
within those functions are references to instance properties. This is why we
define @isAlive in the constructor: we need to attach a separate @isAlive prop-
erty to each instance. That lets us do this:

Download Classes/Tribble.coffee
tribble1.die()
Tribble.makeTrouble() # "Trouble!"

Classes: Functions with Prototypes • 64

http://media.pragprog.com/titles/tbcoffee/code/Classes/Tribble.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/Tribble.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/Tribble.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Killing tribble1 off again would have no effect, thanks to the if @isAlive check.
And as we know, tribbles are born pregnant, so it won’t be long before the
species repopulates our program:

Download Classes/Tribble.coffee
tribble2.breed().breed().breed()
Tribble.makeTrouble() # "Trouble! Trouble! Trouble! Trouble!"

4.4 Inheritance with ’extends’

So far, we’ve talked about how prototypes make it easy to share functional-
ity across a set of objects and how CoffeeScript’s classes provide a useful
syntax for bundling prototype properties together. And if that were all
classes did, they’d be mildly useful. But where classes really shine is when
we want to use inheritance.

JavaScript supports inheritance through something called “prototype chains.”
Let’s say that A’s prototype, B, has its own prototype, C. Then we write this:

a = new A
console.log a.flurb()

First, the runtime checks to see if the particular A instance, a, has a property
flurb; if not, it checks A’s prototype (B); and if that’s still no dice, it checks B’s
prototype (C). In short, it’s traversing the prototype chain.

What happens if C has no flurb, either? Then the runtime checks the default
object prototype (that is, the prototype of {}). So, every prototype inherits
from {}’s prototype, but there may be other prototypes in between.

All of this assigning prototypes to prototypes to prototypes gets a little messy.
That’s where CoffeeScript’s extends keyword comes in.

Let’s make a declaration:

class B extends A

Then, B’s prototype inherits from A’s prototype. In addition, A’s class-level
properties are copied over to B. So if we left the definition of B alone, B in-
stances would have exactly the same behavior as A instances. (There is one
exception: B.name would be 'B' while A.name would be 'A'—name is a special
property).

Now let’s look at a slightly deeper example:

class Pet
constructor: -> @isHungry = true
eat: -> @isHungry = false

class Dog extends Pet

Inheritance with ’extends’ • 65

http://media.pragprog.com/titles/tbcoffee/code/Classes/Tribble.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

eat: ->
console.log '*crunch, crunch*'
super()

fetch: ->
console.log 'Yip yip!'
@isHungry = true

The constructor from Pet is inherited by Dog, which means that dogs start
out hungry. When a dog eats, it makes some noises and then invokes super(),
which means “call the method of the same name on the parent class.” (More
precisely, it means Pet::eat.call this.) Then the dog is no longer hungry.

If a constructor is defined on the child class, then it overrides the constructor
from the parent class. It can invoke the parent constructor at any time using
super(). It’s usually wise to call super() (or, more likely, super—see 'super' Isn't
'super()', on page 67) at the start of a subclass constructor.

Believe it or not, you now know everything there is to know about classes.
As with everything in CoffeeScript, the syntax may be distant from
JavaScript, but the translation is straightforward. If you’re a fan of classical
OOP (object-oriented programming) methodology, this next section’s for you.

Polymorphism and Switching

One great use of classes is polymorphism, which is a fancy object-oriented
programming term for “a thing can be a lot of different things, but not just
any thing.” Here’s a classic example:

class Shape
constructor: (@width) ->
computeArea: -> throw new Error('I am an abstract class!')

class Square extends Shape
computeArea: -> Math.pow @width, 2

class Circle extends Shape
radius: -> @width / 2
computeArea: -> Math.PI * Math.pow @radius(), 2

showArea = (shape) ->
unless shape instanceof Shape

throw new Error('showArea requires a Shape instance!')
console.log shape.computeArea()

showArea new Square(2) # 4
showArea new Circle(2) # pi

Notice that the showArea function checks that the object passed to it is a Shape
instance (using the instanceof keyword). But it doesn’t care what kind of shape
it’s been given; both Square and Circle instances will work. While this is a

Inheritance with ’extends’ • 66

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

’super’ Isn’t ’super()’

What’s wrong with this code?

class Appliance
constructor: (warranty) ->
warrantyDb.save(this) if warranty

class Toaster extends Appliance
constructor: (warranty) ->
super()

When we create a new Toaster, super() will invoke the parent constructor without
passing along the warranty argument, which means that the toaster won’t be saved
in the warranty database.

We could fix this by writing super(warranty), but there’s a shorthand we can use instead:
super. With no parentheses or arguments, super will pass on every one of the current
function’s arguments. If you’re a Rubyist, this will seem familiar. If not, just think
of super as a greedy, greedy keyword—if you don’t tell it which arguments you want
it to pass along, it’ll take ’em all.

trivial example, it’s not hard to imagine a rich geometry library that takes
this approach.

If we didn’t use the instanceof check, that would be known as “duck typing”
(as in, “If it looks like a duck…”). If the target object doesn’t have a computeArea
function, then we’ll get a meaningful error message anyway. Duck typing
is great, but there are times when you want to be sure that a particular
object is what you think it is.

A common idiom in more classical object-oriented languages is to use
polymorphism with switch. We haven’t talked about CoffeeScript’s switch yet,
and there are a number of differences between it and JavaScript’s: first,
there’s an implicit break between clauses to prevent unintended “fall-
through”; second, the result of the switch is returned. (When the return
value is used, break and return are not allowed. If you try, you’ll get Syntax-
Error: cannot include a pure statement in an expression. This is jargon for saying that
it doesn’t make sense to say a = return x, so the compiler won’t allow it as a
possibility.)

CoffeeScript also makes several syntactic changes, in part to remind
JavaScripters of these hidden differences: when is used instead of case and
else instead of default. (The keywords are borrowed from Ruby, where the case
structure has similar semantics.) A single when can be followed by several
potential matches, delimited by commas. Also, instead of :, those match
clauses are separated from their outcomes by indentation (or then).

Inheritance with ’extends’ • 67

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Here’s how it all comes together in a simple factory function:

requisitionStarship = (captain) ->
switch captain

when 'Kirk', 'Picard', 'Archer'
new Enterprise()

when 'Janeway'
new Voyager()

else
throw new Error('Invalid starship captain')

That’s it for our coverage of modules and classes. Just remember: Coffee-
Script certainly doesn’t require you to use classes or classical object-oriented
design patterns—most JavaScript developers do perfectly fine without either,
after all—but for some applications, classes feel like a natural fit.

Speaking of which, remember that mess of code from the project in the last
chapter? Let’s see what we can do about it.

4.5 Project: Refactoring 5x5

Classes give a nice clean way to reorganize the code we’ve written so far, to
encourage modularity and extensibility. Let’s create three classes:

1. Dictionary, which can find valid words on the grid
2. Grid, which manages the letter tiles
3. Player, which keeps track of a player’s score

We’ll save these classes in three different .coffee files. Also, we’ll make these
classes compatible with all major browser environments as well as with
Node.js, paving the way for the jQuery version of the game in the next
chapter. To make the game playable under Node, we’ll have a console.coffee
file that provides a prompt and requires the three classes.

The Dictionary Class

Because we want to support browsers, it makes sense to convert our word
list from a text file to JavaScript code that can be loaded directly. I wrote a
short script to do just that:

Download Classes/5x5/convert.coffee
fs = require 'fs'
owl2 = fs.readFileSync 'OWL2.txt', 'utf8'
wordList = owl2.match /^(\w+)/mg
fileContents = """

root = typeof exports === "undefined" ? window : exports;
root.OWL2 = ['#{wordList.join "',\n'"}']

"""
fs.writeFile 'OWL2.js', fileContents

Project: Refactoring 5x5 • 68

http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/convert.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

The triple-quote """ syntax, which should be familiar to Python coders, is
called a heredoc string. It allows you to write multiline strings in a human-
readable format. You can also use three single quotes, ''', to delimit a heredoc
string. The difference between """ and ''' is the same as the difference between
" and ': The former allows interpolation, while the latter does not.

After running the script, the resulting OWL2.js looks like this:

root = typeof global === "undefined" ? window : global;
root.OWL2 = ['AA',
...
'ZOOGEOGRAPHICAL'];

(I’ve omitted the middle 178,687 lines for the sake of brevity.)

Now, in order to decouple Dictionary from Node, let’s have the word list and
the game’s grid get passed in to Dictionary’s constructor:

Download Classes/5x5/Dictionary.coffee
class Dictionary

constructor: (@originalWordList, grid) ->
@setGrid grid if grid?

Note the implicit assignment of the first argument to @originalWordList (a feature
we covered back in Section 2.4, Property Arguments (@arg), on page 24).

When a new game starts, we’ll call setGrid ourselves with the new grid. This
grid could be of a different size, so we’ll copy and filter our original word list
each time (slice(0) is a well-known trick for copying JavaScript arrays):

Download Classes/5x5/Dictionary.coffee
setGrid: (@grid) ->

@wordList = @originalWordList.slice(0)
@wordList = (word for word in @wordList when word.length <= @grid.size)
@minWordLength = Math.min.apply Math, (w.length for w in @wordList)
@usedWords = []
for x in [0...@grid.size]

for y in [0...@grid.size]
@markUsed word for word in @wordsThroughTile x, y

Notice that we also reset the usedWords list here. We’ll want a way of indicating
that a word has been used:

Download Classes/5x5/Dictionary.coffee
markUsed: (str) ->

if str in @usedWords
false

else
@usedWords.push str
true

Project: Refactoring 5x5 • 69

http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/Dictionary.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/Dictionary.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/Dictionary.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Let’s provide one method that says whether a word is valid and another that
says whether a word is usable at this point in the game:

Download Classes/5x5/Dictionary.coffee
isWord: (str) -> str in @wordList
isNewWord: (str) -> str in @wordList and str not in @usedWords

Here’s the hard part: given a pair of coordinates, we’d like to be able to find
all words that go through that tile of the Grid instance. I’ll spare you the
excerpt, since it’s basically the same as our wordsThroughTile function from the
last chapter.

Now in order to make the class accessible, let’s make it a global:

Download Classes/5x5/Dictionary.coffee
root = exports ? window
root.Dictionary = Dictionary

The Grid Class

Before we define the Grid class, let’s put some other variables in grid.coffee,
giving them module scope:

Download Classes/5x5/Grid.coffee
tileCounts =

A: 9, B: 2, C: 2, D: 4, E: 12, F: 2, G: 3, H: 2, I: 9, J: 1, K: 1, L: 4
M: 2, N: 6, O: 8, P: 2, Q: 1, R: 6, S: 4, T: 6, U: 4, V: 2, W: 2, X: 1
Y: 2, Z: 1

totalTiles = 0
totalTiles += count for letter, count of tileCounts
alphabet = (letter for letter of tileCounts).sort()

randomLetter = ->
randomNumber = Math.ceil Math.random() * totalTiles
x = 1
for letter in alphabet

x += tileCounts[letter]
return letter if x > randomNumber

When we instantiate a grid, let’s generate its initial tiles matrix automatically:

Download Classes/5x5/Grid.coffee
class Grid

constructor: ->
@size = size = 5
@tiles = for x in [0...size]
for y in [0...size]

randomLetter()

Project: Refactoring 5x5 • 70

http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/Dictionary.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/Dictionary.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/Grid.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/Grid.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Now we’ll define some simple functions that allow us to check whether an
(x, y) pair is out of range, to swap two tiles (given an object with two coordi-
nate pairs), and to get a transposed version of the grid (an array of rows
rather than columns):

Download Classes/5x5/Grid.coffee
inRange: (x, y) ->

0 <= x < @size and 0 <= y < @size

swap: ({x1, y1, x2, y2}) ->
[@tiles[x1][y1], @tiles[x2][y2]] = [@tiles[x2][y2], @tiles[x1][y1]]

rows: ->
for x in [0...@size]

for y in [0...@size]
@tiles[y][x]

I’ll spare you the two lines where we make the class a global.

The Player Class

Each Player instance should be given its own name and, optionally, an initial
grid. (As with Dictionary, we’ll use setGrid when a new game starts.) The player
starts with a score of 0, naturally:

Download Classes/5x5/Player.coffee
class Player

constructor: (@name, dictionary) ->
@setDictionary dictionary if dictionary?

setDictionary: (@dictionary) ->
@score = 0
@moveCount = 0

Let’s provide a way for a player to make a move:

Download Classes/5x5/Player.coffee
makeMove: (swapCoordinates) ->

@dictionary.grid.swap swapCoordinates
@moveCount++
result = scoreMove @dictionary, swapCoordinates
@score += result.moveScore
result

The Console.Coffee Interface

All of the code from the last chapter that we didn’t refactor into other
classes—that is, everything related to command-line IO—is in console.coffee.
I won’t repeat the recycled code here, but the important part is these first
four lines:

Project: Refactoring 5x5 • 71

http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/Grid.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/Player.coffee
http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/Player.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Download Classes/5x5/console.coffee
{Dictionary} = require './Dictionary'
{Grid} = require './Grid'
{Player} = require './Player'
{OWL2} = require './OWL2'

The ./ prefix in front of each filename tells Node to load the file from the
current path. An alternative approach, added in Node 0.4, would be to create
a node_modules directory in console.coffee’s working path and then put the files
in there.3 Then no prefix would be needed.

And we’re done! Try it for yourself:

$ coffee console.coffee
Welcome to 5x5!

We’ve refactored our old, haphazard code into four nice, clean modules,
three of which we’ll be reusing in the next two chapters, first in a browser,
then on a server. We saved ourselves a ton of work by separating the reusable
game logic code from the command-line stuff, which (sigh of relief) we shall
never speak of again. Onward!

4.6 Just a Spoonful of Sugar

In this chapter, we’ve learned about two ways that CoffeeScript supports
modular programs: First, individual files (“modules”) are isolated from each
other, except when variables are explicitly exported. And second, functions
and data can be combined into classes.

We applied both techniques to clean up our quick-and-dirty version of 5x5
from the last chapter. The result? Not only is the code more readable, but
it’s also much easier to refactor, as we’ll see in the next chapter when we
transform our old-school text-based program into a newfangled web app.
And we’ll do it with a little help from JavaScript’s good pal, jQuery.

4.7 Exercises

1. Explain this output, and fix the code so that the old aphorism is dis-
played twice:

root = global ? window

root.aphorism = 'Fool me 8 or more times, shame on me'

do restoreOldAphorism = ->
aphorism = 'Fool me once, shame on you'
console.log aphorism

3. http://nodejs.org/docs/v0.4.8/api/modules.html

Just a Spoonful of Sugar • 72

http://media.pragprog.com/titles/tbcoffee/code/Classes/5x5/console.coffee
http://nodejs.org/docs/v0.4.8/api/modules.html
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

console.log aphorism

Fool me once, shame on you
Fool me 8 or more times, shame on me

2. As everyone knows, the Genie Workers International Union mandates
a limit of three wishes across all genies. The following code is designed
to enforce that rule, but it has a flaw:

Genie = ->
Genie::wishesLeft = 3

Genie::grantWish = ->
if @wishesLeft > 0

console.log 'Your wish is granted!'
@wishesLeft--

What’s wrong with this code, and how would you fix it?

3. The prototype property is not, unfortunately, the “true” prototype of an
object. The good news is that you can get the true prototype with __proto__.
The bad news is that __proto__ isn’t supported in all JS environments; in
particular, it’s not available under Internet Explorer.

Still, it’s useful to use __proto__ to illustrate the rules we talked about re-
garding prototype inheritance:

class Season
class Spring extends Season

(new Season).__proto__.__proto__
(new Spring).__proto__.__proto__.__proto__

In an environment that supports it (such as Node), what is the value of
the two prototypes shown here?

4. We haven’t discussed bound functions on classes, so perhaps a
demonstration is in order. What output do you expect the following code
to generate?

(window ? global).property = 'global context'
@property = 'surrounding context'
class Foo
constructor: -> @property = 'instance context'
bar: => console.log @property

foo = new Foo
bar = foo.bar
foo.bar()
bar()

Why might you prefer to define bar using -> instead?

Exercises • 73

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

CHAPTER 5

Web Interactivity with jQuery
Once upon a time, programmers wrote web applications in pure JavaScript,
unencumbered by heavy frameworks. Adventurous programmers roamed
these fertile lands, devising exciting new functionality for their apps. But
all was not well, for every bold feat performed by these dynamic knights had
to be done twice (at least): once in Netscape (and its open-source descen-
dants) and once in Internet Explorer.

To alleviate this burden, programmers began to write functions that allowed
them to avoid repetition in their code. These functions became ever more
numerous and complex, fusing into libraries made up of thousands of lines
of code. Soon, warring factions began to form around them. Among these
were MooTools, Prototype, Dojo, and YUI.

But as the years passed, one library became so popular as to become the
de facto standard: jQuery.1 Initially released by the then twenty-two-year-
old John Resig in 2006, jQuery is now used by nearly one-third of the ten
thousand most-visited websites,2 and Resig has become one of the world’s
most famous programmers. Recent spin-offs, including jQuery Mobile, have
brought jQuery’s familiar syntax far beyond the desktop-oriented web.3

Although other libraries are still widely used, jQuery truly stands apart.

In this chapter, we’ll go through the basics of using jQuery to manipulate
the elements of a web page and respond to events. (If you’re familiar with
jQuery on JavaScript, this will just be a review with minor syntactic adjust-
ments.) At the end of the chapter, we’ll use these newfound superpowers to
turn our quaint little word game into a full-fledged browser-based app.

1. http://jquery.com/
2. http://trends.builtwith.com/javascript/JQuery
3. http://jquerymobile.com/

http://jquery.com/
http://trends.builtwith.com/javascript/JQuery
http://jquerymobile.com/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

5.1 The Tao of jQuery

Each JavaScript library has its own particular philosophy, and jQuery’s is
a natural fit for JavaScript (and CoffeeScript, too!).

jQuery doesn’t modify JavaScript’s built-in object prototypes, such as String
and Array. That’s the fundamental difference between jQuery and Prototype,
the second-most popular JavaScript library. Prototype can do some amazing
things, but using it means potentially breaking any code that wasn’t written
with Prototype in mind. For instance, a library might use for x of arr to iterate
over an array’s indices, not realizing that this will also include the properties
of Array.prototype added by Prototype.js. (It’s partly for this reason that for...in
is preferred to for...of for array iteration. for own...of would also work in this
case, because it skips properties that fail the hasOwnProperty test.)

Instead, jQuery’s power is safely tucked away in one object, jQuery, which is
normally aliased as $. We’ll use the $ alias throughout this book, but be
aware that it’s possible to disable it, in case another library wants to use
that variable name.4

The jQuery object lets you do everything from animating transitions to
adding event callbacks to pulling data from the server. And that’s without
even drawing on the thousands of free plugins available.5 Of course, this
chapter and the next are too brief to show you everything jQuery is capable
of, but it should give you enough of an understanding to avoid common
pitfalls while exploring jQuery’s vast capabilities, which are exquisitely
documented at http://api.jquery.com.

5.2 Manipulating the DOM

If you’re familiar with raw JavaScript in a web context, you know that HTML
tags like <p> define DOM elements, which JavaScript code can read, modify,
and create from whole cloth.

jQuery wraps these elements with its own objects, which provide more
convenient functionality (and much more cross-browser consistency) than
accessing the elements directly. To obtain a jQuery object, you usually use
a selector, a string passed to the jQuery object. We’ll learn more about selec-
tors in the next section, Section 5.3, Getting Selective, on page 77; for now,
all you need to know is that they’re a superset of CSS. So to select a DOM
element with the ID pikachu and store the result in a jQuery object $pokemon

4. http://api.jquery.com/jQuery.noConflict/
5. http://plugins.jquery.com/

The Tao of jQuery • 76

http://api.jquery.com
http://api.jquery.com/jQuery.noConflict/
http://plugins.jquery.com/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

(it’s a common stylistic convention to prefix all jQuery object names with
$), you would write this:

$pokemon = $('#pikachu')

Once you’ve got a jQuery object, you have a massive arsenal of functions
at your disposal. As a rule, these functions act on all of the matched ele-
ments. So if you have two paragraphs and you write the following, both
paragraphs will be faded out:

$('p').fadeOut()

An exception to this rule is “getter” functions. These only act on the first
matched element (with the notable exception of text, which combines the
textual context of all matched elements into a single string). Consider this:

sonnet = $('p').html()

This code will only return the HTML content of the first paragraph in your
document. By contrast, “setters” act on all matched elements. Often, these
have the same name, like so:

sonnet = $('p').html()
$('p').html sonnet

This will first read the HTML of the first paragraph, then set the HTML of
all paragraphs to match. (The text getter would strip out HTML tags, as well
as concatenating the content of all matched elements. Think carefully about
whether text or html is more appropriate when extracting content.6) Of course,
this can be condensed to a (somewhat baffling) one-liner:

$('p').html $('p').html()

The moral of this story is this: jQuery and CoffeeScript can be used to write
elegant, readable code—or you can just make runnable ASCII art. With great
power comes great responsibility.

5.3 Getting Selective

When you pass a string to jQuery, it’s interpreted as a selector, and an object
containing the matching elements is returned. The selector syntax is designed
to mirror and extend CSS’s selector syntax. By itself, an HTML tag type
(such as 'p') will match all elements of that type. An identifier preceded by
is a unique ID, and one preceded by . is a class name.

6. http://stackoverflow.com/questions/1910794/jquery-text-vs-html

Getting Selective • 77

http://stackoverflow.com/questions/1910794/jquery-text-vs-html
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Where’d Those DOM Elements Go?

Every jQuery object you create is just an ordered list of DOM elements wrapped up
with a neat feature-rich bow. To get those elements out, the official docs suggest
that you use the get:

pikachu = $('#pikachu').get(0)

But a dirty little secret of jQuery objects is that they store their DOM elements by
numerical index, allowing array-style access:

pikachu = $('#pikachu')[0]

You can even use array functions like length and slice (though not push or concat—in-
stead, try add).

Of course, unless you know what you’re doing, you should resist the urge to use
DOM elements directly. If your Firefox-tested DOM code crashes in IE7, you have
only yourself to blame.

You can list multiple selectors, separated by commas, to match all of them.
For instance, $('a, button, .link') would match all a elements, all button elements,
and all elements with the link class. The same set of elements could be
obtained with $('a').add($('button')).add($('.link')).

When multiple identifiers are joined by spaces, they match descendants.
For instance, $('#header img') matches all img tags that are within the element
with the unique ID header. The same selection could be done through
chaining with the find method: $('#header').find('img'). If you only wanted images
that are the immediate children of header, you could either use the CSS2
syntax $('#header > img') or the chain $('#header').children('img').

In addition to these CSS selectors, there are several special modifiers added
by jQuery. For instance, to match only odd table rows, we could write
$('tr:odd'). To match only list items that contain links, we could write $('li:has(a)').
Matching all checked checkboxes is as easy as writing $(':checked').

There are two important points to remember about selected elements in
jQuery. First, the selection is performed only once—selectors are not “live”
(except in the appropriately named live method and the functionally similar
delegate, which run the given selector as needed every time an event is fired).
Second, there’s no distinction in jQuery between a single element and a
collection of elements; a single element is just a collection of size 1. So for
instance, if the first div on your page has the id header, then $('#header'),
$('div:first'), and $('div').first() are all equivalent.

Getting Selective • 78

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Feeling overwhelmed yet? Relax! The important thing is to remember the
general concept: you pass a string to the $ function; you get a set of elements
out. We’ll review some of these selection techniques in the exercises. You
can find a thorough list of selector strings jQuery understands at http://
api.jquery.com/category/selectors/.

5.4 Reacting to Events

We’ve seen how jQuery makes it easy to grab, change, and even add elements
to the page. But jQuery, in its heart of hearts, has seen fit to bestow still
one more miracle upon us mortals: simple event binding.

How simple? Well, let’s say that we want the big headline on our page to
gain an exclamation point every time it gets clicked:

$('h1').click -> $(this).html $(this).html() + '!'

This code selects all h1 elements on the page, then binds a click event handler
to each of them. When that click handler is triggered, it appends '!' to the
clicked element’s contents.

Event callbacks are called in the context of the DOM element that triggered
the event. Often, we want to jQuerify the context element, as we do in the
example above, by writing $(this).

What happens if we bind multiple event handlers of the same type to the
same elements?

$('h1')
.click(-> $(this).html $(this).html() + '!')
.click(-> alert $(this).text())

Each of those click calls is made on the same object; see jQuery Chain Gang,
on page 80. Note that whitespace here is not significant; it’s purely a
stylistic convention. We could easily collapse this code into a single line:
$('h1').click(-> ...).click(-> ...). That means that while the parentheses around the
callback on the last line are optional, those around 'h1' and the callback on
the second line are not.

All of the event handlers will run in the order in which they were attached.
So when we click a heading in this example, '!' will be added to its contents
and the resulting text will be (irritatingly) displayed in an alert box.

You can unbind events using—wait for it—unbind. Calling $elem.unbind() will
unbind everything attached to $elem, while $elem.unbind 'click' will just unbind
the click events. (What if you want to unbind a specific event? See the exer-
cises at the end of this chapter.)

Reacting to Events • 79

http://api.jquery.com/category/selectors/
http://api.jquery.com/category/selectors/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

jQuery Chain Gang

Check this out:

$('#logo')
.css(fontSize: 64)
.hover(-> $(this).css(fontWeight: 'bold'))
.click(-> alert 'How dare you click the mighty logo!')

Here we’re using chaining—nearly all jQuery methods return the object they were
called on, so the above is equivalent to this:

$logo = $('#logo')
$logo.css fontSize: 64
$logo.hover -> $logo.css fontWeight: 'bold'
$logo.click -> alert 'How dare you click the mighty logo!'

Generally, chaining is a good thing—it tends to improve readability by reducing
repetition, and it lets code minify a tad better. But be warned: some jQueryers go
“chain crazy,” turning their entire app into one long, meandering chain. Use it in
moderation.

There’s one last thing you’ll need to know before we get to our project.
Remember how I said that selectors aren’t “live”? Well, there’s one exception
to that rule: when you use the aptly-named live method to bind an event
handler. Let’s do an example:

$('#oldSpiceGuy').live 'click', -> alert "I'm on a horse."
$('body').html '<p id="oldSpiceGuy">The man your man could smell like</p>'

Even though $('#oldSpiceGuy') doesn’t match anything in the first line, the
event handler will work. You see, unlike all other jQuery methods, live doesn’t
care about the elements that were matched when you made the selection:
it only cares about the selector string itself. (jQuery makes this string
available via the .selector property.)

A full explanation of how live works is beyond the scope of this book, but it
has to do with “event bubbling.”7

5.5 Project: Browser-Based 5x5

We’re going to create a browser-based version of the game from the last
chapter using the same three class files: Grid.coffee, Dictionary.coffee, and Play-
er.coffee. These encapsulate our game state and logic. We’ll add one new

7. http://www.alfajango.com/blog/the-difference-between-jquerys-bind-live-and-dele-
gate/

Project: Browser-Based 5x5 • 80

http://www.alfajango.com/blog/the-difference-between-jquerys-bind-live-and-delegate/
http://www.alfajango.com/blog/the-difference-between-jquerys-bind-live-and-delegate/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

CoffeeScript file, jq5x5.coffee, which will define our interface in conjunction
with index.html and style.css.

index.html

For a production deployment, we’d want to compile our CoffeeScript files to
JavaScript, then minify and concatenate that code into a single tidy package.
However, for our purposes, in-browser compilation will do fine. We’ll use
the coffee-script.js from http://jashkenas.github.com/coffee-script/extras/cof-
fee-script.js to do just that. Let’s include it, and let’s throw in the old OWL2
word list and jQuery while we’re at it:

Download jQuery/5x5/index.html
<script type="text/javascript" src="coffee-script.js"></script>
<script type="text/javascript" src="OWL2.js"></script>
<script type="text/javascript" src="jquery-1.5.2.min.js"></script>

And now let’s include the source files using the special type="text/coffeescript"
attribute:

Download jQuery/5x5/index.html
<script type="text/coffeescript" src="Grid.coffee"></script>
<script type="text/coffeescript" src="Dictionary.coffee"></script>
<script type="text/coffeescript" src="Player.coffee"></script>
<script type="text/coffeescript" src="jq5x5.coffee"></script>

Oh, and we’ll want to include our style.css:

Download jQuery/5x5/index.html
<link rel="stylesheet" type="text/css" href="./style.css" />

That’s it for the head of the page. Now we just need a body with three ele-
ments—a p named message (to show messages to the players), a div named
grid (to contain the tiles), and a table named scores (guess):

Download jQuery/5x5/index.html
<body>

<p id="message"></p>
<div id="grid"></div>
<table id="scores">

<tr>
<th id="p1name"></th>
<th id="p2name"></th>

</tr>
<tr>
<td id="p1score"></td>
<td id="p2score"></td>

</tr>
</table>

</body>

Project: Browser-Based 5x5 • 81

http://jashkenas.github.com/coffee-script/extras/coffee-script.js
http://jashkenas.github.com/coffee-script/extras/coffee-script.js
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/index.html
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/index.html
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/index.html
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/index.html
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Now open up index.html in your favorite browser. (If that happens to be
Chrome, you’ll have to start the browser using the -allow-file-access-from-files
flag; otherwise, Chrome’s strict security policies will prevent the CoffeeScript
files from being loaded. This issue only occurs when loading local files directly
in the browser, such as URLs starting with file://. In the next chapter, we’ll
use Node.js to serve our site from localhost:// instead.)

style.css

In principle, everything that can be done in a CSS file can be done from
code by using jQuery’s css method, for example. However, it’s often much
more efficient to use static styles. For instance, if we want all of the text on
the page to be dark gray, we can simply write this:

body { color: #333 }

In order to do this without a stylesheet, we’d have to call $elem.css 'color', '#333'
every single time we created a new element with text. Ugh.

To save us that trouble, let’s decide now how we’re going to lay out our page.
We’ll represent our 5x5 grid of tiles as 5 ul rows, each with 5 lis, within the
#grid div. We want #grid to be centered and have a large, monospaced font:

Download jQuery/5x5/style.css
#grid {

position: relative;
text-align: center;
width: 480px;
margin: 16px auto;
padding: 32px 0;
border: 2px solid #555;
font-size: 64px;
font-family: Monaco, "DejaVu Sans Mono", "Lucida Console", monospace;

}

To display each row horizontally, we set the ul elements to have list-style: none
and the li elements to have display: inline. We also set cursor: pointer, so that the
mouse cursor reacts to the tiles as if they were links, and provide a hover
style, so that the tile being hovered over changes color. Oh, and tiles also
change color if they have the selected class.

Other CSS elements that we’ll need include a #message to prompt the next
move, a .notice div to display the result of each move, and a #scores table:

Download jQuery/5x5/style.css
#message {

position: relative;
text-align: center;

Project: Browser-Based 5x5 • 82

http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/style.css
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/style.css
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

margin: 32px;
font-size: 24px;

}

Download jQuery/5x5/style.css
.notice {

position: relative;
text-align: center;
width: 486px;
margin: 0 auto;
padding: 16px 0;
background: #eb4;
font-size: 18px;

}

Download jQuery/5x5/style.css
#scores {

position: relative;
text-align: center;
width: 484px;
margin: 16px auto;
border: 1px solid #555;
font-size: 24px;

}

jq5x5.coffee

Now for the meat of the project! We’ll start by defining some variables that
we want to have module-level scope:

Download jQuery/5x5/jq5x5.coffee
grid = dictionary = currPlayer = player1 = player2 = selectedCoordinates = null

Most of those variables will be given real values in our new newGame function:

Download jQuery/5x5/jq5x5.coffee
newGame = ->

grid = new Grid
dictionary = new Dictionary(OWL2, grid)
currPlayer = player1 = new Player('Player 1', dictionary)
player2 = new Player('Player 2', dictionary)
drawTiles()

player1.num = 1
player2.num = 2
for player in [player1, player2]

$("#p#{player.num}name").html player.name
$("#p#{player.num}score").html 0

showMessage 'firstTile'

Project: Browser-Based 5x5 • 83

http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/style.css
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/style.css
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/jq5x5.coffee
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/jq5x5.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Now, because this function refers to HTML on the page, we want to ensure
that it isn’t called until the document is ready. Hence, it’s called from a
$(document).ready callback:

Project: Browser-Based 5x5 • 84

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Download jQuery/5x5/jq5x5.coffee
$(document).ready ->

newGame()
$('#grid li').live 'click', tileClick

You might be wondering about the drawTiles function in newGame. Here it is:

Download jQuery/5x5/jq5x5.coffee
drawTiles = ->

gridHtml = ''
for x in [0...grid.tiles.length]
gridHtml += ''
for y in [0...grid.tiles.length]

gridHtml += "<li id='tile#{x}_#{y}'>#{grid.tiles[x][y]}"
gridHtml += ''

$('#grid').html gridHtml

We could’ve used jQuery to generate and insert each tile individually, but
there’s nothing wrong with creating a big ol’ HTML string when you need to
add a whole lot of stuff at once to a document. In fact, it’s often the most
efficient approach, since it’s less expensive to manipulate a string than to
manipulate the DOM.

Now, it’s not much of a game until we take some input—we need to define
tileClick, which we bound to the li elements within #grid using jQuery’s live
function. Why live rather than bind? Well, live events are triggered no matter
what happens to the elements they’re bound to—the elements can be burned
down to the ground then built back up from nothing, and those trusty live
events will still be there. There’s also an efficiency advantage—live only creates
a single event handler, while bind would create twenty-five of them.

Anyway, here’s what happens when you click a tile:

Download jQuery/5x5/jq5x5.coffee
tileClick = ->

$tile = $(this)
if $tile.hasClass 'selected'

undo
selectedCoordinates = null
$tile.removeClass 'selected'
showMessage 'firstTile'

else
$tile.addClass 'selected'
[x, y] = @id.match(/(\d+)_(\d+)/)[1..]
selectTile x, y

The context of a jQuery event callback is the DOM element that triggered
the event—in this case, the li that was clicked. We wrap that element to get
a jQuery object, which we call $tile. If the tile is already selected, we unselect

Project: Browser-Based 5x5 • 85

http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/jq5x5.coffee
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/jq5x5.coffee
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/jq5x5.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

it and go back to asking players to select their first tile. If it’s a bona fide
selection, we proceed to selectTile:

Download jQuery/5x5/jq5x5.coffee
selectTile = (x, y) ->

if selectedCoordinates is null
selectedCoordinates = {x1: x, y1: y}
showMessage 'secondTile'

else
selectedCoordinates.x2 = x
selectedCoordinates.y2 = y
$('#grid li').removeClass 'selected'
doMove()

If selectedCoordinates is null, then this is the player’s first tile selection, so we
just store the coordinates. Otherwise, the player has chosen both tiles for
this turn, so we go on to doMove, which has the Player instance move the tiles
around and tabulate score, then displays the results in a notice box:

Download jQuery/5x5/jq5x5.coffee
doMove = ->

{moveScore, newWords} = currPlayer.makeMove selectedCoordinates
if moveScore is 0

$notice = $("#{currPlayer.name} formed no words this turn.")
else

$notice = $("""
<p class="notice">
#{currPlayer} formed the following #{newWords.length} word(s):

#{newWords.join(', ')}

earning #{moveScore / newWords.length}x#{newWords.length} =
#{moveScore} points!

</p>
""")

showThenFade $notice
endTurn()

showThenFade is a bit of eye candy that adds a yellow box below the grid, then
fades and squashes it before removing it from the DOM entirely:

Download jQuery/5x5/jq5x5.coffee
showThenFade = ($elem) ->

$elem.insertAfter $('#grid')
animationTarget = opacity: 0, height: 0, padding: 0
$elem.delay(5000).animate animationTarget, 500, -> $elem.remove()

Finally, endTurn updates the tile grid and the score table and then tells the
next player that they’re up to bat.

To see how the game looks when it all comes together, take a look at Figure
5, 5x5, powered by jQuery, on page 87.

Project: Browser-Based 5x5 • 86

http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/jq5x5.coffee
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/jq5x5.coffee
http://media.pragprog.com/titles/tbcoffee/code/jQuery/5x5/jq5x5.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Figure 5—5x5, powered by jQuery

There are, of course, plenty more features we could add—for instance, a list
of words that have already been used, a time limit for each turn, and a
“game over” screen after each player has taken a certain number of turns
(or after a certain time limit), not to mention fancier animations and interface
elements (like drag-and-drop, a feature that’s a snap to implement with
jQuery UI.)8 But I’ll leave those avenues for you to explore on your own.

5.6 The Future Is jQueryfied

In this chapter, we’ve touched on all the basics of jQuery, the closest thing
JavaScript has to a standard library for working with web pages. You’ve

8. http://jqueryui.com/

The Future Is jQueryfied • 87

http://jqueryui.com/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

learned to grab elements with selectors, manipulate their CSS styles and
HTML attributes, and attach events. The prospect of building an interactive
web page from scratch should no longer cause you to break out in a cold
sweat.

One major topic we haven’t addressed is Ajax. jQuery makes communicating
with the server a breeze. You can find the relevant docs at http://api.jquery.
com/category/ajax/.

There’s something else worth mentioning. Thanks to Node.js, jQuery can
now be run easily on the server. How? Through a library called jsdom, which
provides a simulated browser environment within Node.9 One fantastic use
case for jsdom and jQuery is templating. Why bother writing server-side
templates (such as ERB files in Ruby on Rails) when you can just take raw
HTML and manipulate it on the server with jQuery before serving it? That
way, you can serve an initial version of the page that makes sense (great
for search engines and screen readers) and then reuse the same code on
the client side to add dynamic content.

I encourage you to play with Ajax and jsdom on your own. In the next
chapter, we’ll take a different approach: we’ll use WebSocket (through a
library called Socket.io) to enable two-way asynchronous communication
between the client and the server. And we’ll get to know Node.js a little better
while we’re at it, using it to host the multiplayer version of 5x5.

5.7 Exercises

1. One common (in fact, nearly universal) mistake made by jQuery newbies
is that they think of jQuery selectors as “live.” For example, they think
that they can add new items to the menu (that is, inserting new lis as
children of #menu) that will also be hidden by using the following:

$('#menu li').hide()

False! How would you go about achieving the desired behavior, without
calling any methods on the individual li elements? (You’re allowed to use
a stylesheet.)

2. What does this code do? Is the world safe?

$('a').click(destroyWorld).unbind('click')

3. Three of the following selectors are functionally equivalent. Which would
behave differently, and how?

9. http://jsdom.org/

Exercises • 88

http://api.jquery.com/category/ajax/
http://api.jquery.com/category/ajax/
http://jsdom.org/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

$('#awayTeam .redShirt').die()
$('#awayTeam').find('.redShirt').die()
$('.redShirt, #awayTeam').die()
$('.redShirt', $('#awayTeam')).die()

(By the way, die really is a jQuery method—it’s used to unbind events
attached with live!)

4. Find, explain, and fix the bug in this code:

$('#drJekyll').click ->
alert 'Now I shall transform!'
$('#drJekyll').attr 'id', 'mrHyde'
$('#drJekyll').unbind 'click'

Exercises • 89

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

CHAPTER 6

Server-Side Apps with Node.js
Running JavaScript on the server has long been a dream of web developers.
Rather than switching back and forth between a client-side language and
a server-side language, a developer using a JavaScript-powered server would
only need to be fluent in that lingua franca of web apps—or in its twenty-
first-century offshoot, CoffeeScript.

Now that dream is finally a reality. In this chapter, we’ll take a brief tour of
Node.js, starting with its module pattern (part of the CommonJS specifica-
tion). Then we’ll figure out just what an “evented architecture” is, with its
implications for both server performance and our sanity. Finally, we’ll add
a Node back end to our 5x5 project from the last chapter, with real-time
multiplayer support powered by WebSocket.

6.1 What Is Node.js?

Ignore the name: Node.js isn’t a JavaScript library. Instead, Node.js is a
JavaScript interpreter (powered by V8, the engine used by Google’s Chrome
browser) that interfaces with the underlying operating system. That way,
JavaScript run by Node.js can read and write files, spawn processes,
and—most enticingly—send and receive HTTP requests.

Like CoffeeScript, Node is a new project (dating to early 2009) that’s taken
off rapidly and attracted all kinds of excitement. Witness the Node.js
Knockout, a Rails Rumble-inspired competition to develop the best Node
app in forty-eight hours.1

A number of awesome projects have already been written with Node and
CoffeeScript. The following is a small, select sampling. You might want to

1. http://nodeknockout.com/

http://nodeknockout.com/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

come back to this list after you’ve completed the book; reading real-world
code is a great way to take your mastery to the next level:

• Docco [Ash11]: Uber-computer scientist Donald Knuth advocated “literate
programming,” in which code and comments are written so that someone
encountering the program for the first time can understand it just by
reading it once. Docco, written by Jeremy Ashkenas, supports this
methodology by generating beautiful web pages in which comments and
code are displayed side-by-side.

• Eco [Ste11]: Say you’re writing a Node-based web application. You have
all of these HTML skeletons and a mess of application code, but you’re
not sure how to combine the two. Eco lets you embed CoffeeScript
within your markup, turning it into a server-side templating language.

• Zappa [NM11]: Creating web applications from scratch has never been
simpler. Zappa is a layer on top of Node’s popular Express framework
that lets you succinctly define how your web server should respond to
arbitrary HTTP requests.2 Works great with Eco, too!

• Zombie.js [Ark11]: There’s a new kid on the full-stack web app testing
block: Zombie.js. Zombie lets you validate your application’s behavior
with the power of Sizzle, the same selection engine that powers jQuery.
Not only is it easy to use, it’s also insanely fast.

You can find a more comprehensive list of CoffeeScript-powered apps of all
kinds at http://github.com/jashkenas/coffee-script/wiki/In-The-Wild.

6.2 Modularizing Code with ’exports’ and ’require’

In past chapters, we’ve used global to put variables in an application-wide
namespace. While global has its place, Noders generally prefer to keep their
code nice and modular, with each file having its own namespace. How, then,
do you share objects from one file with another?

The answer is a special object called exports, which is part of the CommonJS
module standard. A file’s exports object is returned when another file calls
require on it. So, for instance, let’s say that I have two files:

Download Nodejs/app.coffee
util = require './util'

console.log util.square(5)

2. http://expressjs.com

Modularizing Code with ’exports’ and ’require’ • 92

http://github.com/jashkenas/coffee-script/wiki/In-The-Wild
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/app.coffee
http://expressjs.com
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Download Nodejs/util.coffee
console.log 'Now generating utility functions...'
exports.square = (x) -> x * x

When you run coffee app.coffee, require './util' executes util.coffee and then returns
its exports object, giving you the following:

Now generating utility functions...
25

You might be wondering why we didn’t need to specify a file extension. A .js
file extension is always optional under Node.js. .coffee is also optional but
only if the running application has loaded the coffee-script library, which is
always implicitly done when we use coffee to run a file. coffee-script also tells
Node how to handle CoffeeScript files. So if we compiled app to JavaScript
but not util, then we’d have to write this:

Download Nodejs/app.js
require('coffee-script');
var util = require('./util');
console.log(util.square(5));

When a library’s name isn’t prefixed with . or /, Node looks for a matching
file in one of its library paths, which you can see by looking at require.paths.

By convention, a library’s name for require is the same as its name for npm.
Recall, for instance, that we used npm install -g coffee-script to install CoffeeScript.
That gave us the coffee binary, but also the coffee-script library. We’ll be using
npm to install some more libraries for our project at the end of this chapter.

6.3 Thinking Asynchronously

One of the most common complaints about JavaScript has always been its
lack of support for threading. While popular languages like Java, Ruby, and
Python allow several tasks to be carried out simultaneously, JavaScript is
strictly linear.

Yet what might seem on its surface to be JavaScript’s greatest weakness is
now widely seen as a blessing in disguise. Without threads, there are no
mutexes, no race conditions, no endless sleep loops. Many of the most com-
mon sources of software bugs are banished. What’s more, multithreading
often adds significant overhead to an application, especially to web servers,
which is one reason why Node.js has a reputation as an efficient alternative
to frameworks in languages that typically rely on threads for concurrency.

(Of course, without threads there’s no way to take advantage of multiple
processors. The good news is that there are already projects out there, such

Thinking Asynchronously • 93

http://media.pragprog.com/titles/tbcoffee/code/Nodejs/util.coffee
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/app.js
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

as multi-node and cluster, that effectively bind multiple instances of your
app to the same server port, giving you the performance advantages of par-
allel processing without the headaches of sharing data across threads.3)

Because JavaScript is event-oriented rather than thread-oriented, events
only run when all other execution has stopped. Imagine how frustrating it
would be if every time your application made a request (say, to the file system
or to an HTTP server), it froze up completely until the request was completed!
For that reason, nearly every function in the Node.js API uses a callback:
you make your request, Node.js quickly passes it along, and your application
continues as if nothing happened. When your request is completed (or goes
awry), the function you passed to Node.js gets called.

For example, if you wanted to show the contents of the current directory,
you would write the following:

fs = require 'fs'
fs.readdir '.', (err, files) ->

console.log files
console.log 'This will happen first.'

Here’s what happens:

1. We ask Node.js to read the current directory with fs.readdir, passing a
callback.

2. Node.js passes the request along to the operating system, then immedi-
ately returns.

3. We print 'This will happen first.' to the console.

4. Once our code has run, Node.js checks to see if the operating system
has answered our request yet. It has, so it runs our callback, and a list
of files in the current directory is printed to the console.

You got that? This is very important to understand. Your code is never inter-
rupted. No matter how many RPMs your hard drive has, that callback isn’t
getting run until after all of your code has run. JavaScript code never gets
interrupted. Even the seemingly precise setTimeout and setInterval will wait
forever if your code gets stuck in an infinite loop.

All of that is as true in the browser as it is in Node, but it’s doubly important
to understand in Node because your application logic will take the form of

3. http://github.com/kriszyp/multi-node and http://github.com/learnboost/cluster,
respectively.

Thinking Asynchronously • 94

http://github.com/kriszyp/multi-node
http://github.com/learnboost/cluster
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

tangled chains of callbacks. Have no doubt about it. The challenge is to
manage them in a way that humans can understand.

Consider how a simple form submission to a web application gets handled:

1. We get the user’s information from the database to check that they have
permission to make the request.

2. If so, we update the database accordingly.

3. We read a template from the file system, customize it appropriately, and
send it to the user.

Then, at the very least, our application skeleton looks like this:

formRequestReceived = (req) ->
checkDatabaseForPermissions req, ->

updateDatabase req, ->
renderTemplate req, (tmpl) ->

sendResponse tmpl

And that’s without error-handling at each step!

Unfortunately, that matryoshka doll feeling is never quite going to go away.
The fact is, in most languages you’d rely on threads so that you could just
write something like this:

formRequestReceived = (req) ->
if checkDatabaseForPermissions req

updateDatabase req
tmpl = renderTemplate req
sendResponse tmpl

But those languages are pretending to synchronize the asynchronous.
Somewhere in each of those database-calling and file-reading functions,
there’s a sleep loop saying, “I hope someone else does something useful while
I wait to hear from the database.” It’s simpler on the surface, but at a price
in memory, CPU, and—more often than not—unpleasant surprises.

Note that many NodeJS API functions do offer a synchronous version for
convenience. For instance, instead of using fs.readdir with a callback, you can
call fs.readdirSync and simply get the list of filenames returned to you. If your
application doesn’t have any events waiting to fire, then there’s no reason
not to use these convenient alternatives.

Unfortunately, there’s no way to implement a synchronous version of an
arbitrary asynchronous function in JavaScript or CoffeeScript. It’s only
possible using native extensions (typically written in C++), which are beyond
the scope of this book.

Thinking Asynchronously • 95

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Scope in Loops

Remember what we learned in Section 2.2, Scope: Where You See ’Em, on
page 18: only functions create scope. Expecting loops to create scope leads
otherwise mild-mannered programmers to summon forth horrific bugs when
dealing with asynchronous callbacks. In fact, this is probably the most
common source of confusion in asynchronous code.

For instance, let’s say that we have an application that loads numbers from
some (synchronous) source and keeps a running tally of those numbers
until the sum meets or exceeds limit. Each time a number is loaded, that
number—and the sum thus far—needs to be saved. Also, due to overzealous
security requirements, each save needs to be encrypted using a key unique
to the given number. That key must be fetched asynchronously via the getEn-
cryptionKey function.

A first attempt might look like this:

sum = 0
while sum < limit

sum += x = nextNum()
getEncryptionKey (key) ->

saveEncrypted key, x, sum # FAIL!

The problem here is that by the time the getEncryptionKey callback is called, x
and sum have moved on—in fact, the entire loop has been run. So for each
x the loop goes through, the values of x and sum after the loop has finished
running will be saved (most likely with the wrong encryption key).

The solution is to capture the values of x and sum. The easiest way to do that
is to use an anonymous function. The do keyword was added to CoffeeScript
for precisely this purpose:

sum = 0
while sum < limit

sum += x = nextNum()
do (x, sum) ->

getEncryptionKey (key) ->
saveEncrypted key, x, sum # Success!

If you’re familiar with Lisp, this use of do should remind you of the let key-
word. do (x, sum) -> ... is shorthand for ((x, sum) -> ...)(x, sum). So now the line
saveEncrypted key, x, sum references the copies of x and sum created by the do
instead of the x and sum used by the loop.

Thinking Asynchronously • 96

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Note that this form shadows the outer x and sum, making them inaccessible.
If you want to have access to the original variables while still capturing their
values, then you might write something like this:

do ->
capturedX = x; capturedSum = sum
...

Now it’s time for a little project of our own, extending the jQuery version of
5x5 with a Node-powered back end.

6.4 Project: Multiplayer 5x5

We’re going to build a web server that can let folks take each other on at
5x5. On the client side, we’ll be using essentially the same HTML and CSS
as in the last chapter; our server will serve all of those static files (and some
CoffeeScript, of course) and handle the game state.

There are a number of ways that we could handle the problem of coordinating
the clients with the server. How much logic do we want to put in the client
and how much on the server? Many frameworks, such as Backbone.js, exist
to make this problem conceptually simpler.4 Often it’s desirable to have
some logic on the client side (for performance) and some logic on the server
side (for security), and the two may overlap. But for our purposes, we’re
going to lean toward a “dumb client” approach, putting all of the logic on
the server side. That means that when player A makes a move, the following
happens:

1. Player A’s client sends the move (that is, the coordinates of the swapped
tiles) to the server.

2. If the move is valid, the server sends both clients the results of the move.

3. The two clients display the results.

Simple, right? This approach makes the client library very light, since the
Dictionary, Grid, and Player classes only need to exist on the server side (not to
mention the 2.1 MB list of valid words!). The downside is that there’s going
to be a bit of lag before players see the results of their actions. In a real
application, we’d want to put more thought into optimizing responsiveness.
(For instance, Google Docs syncs every word you type to the server, but
imagine how frustrating it would be to not see those letters on your screen
until the server acknowledged them!)

4. http://documentcloud.github.com/backbone/

Project: Multiplayer 5x5 • 97

http://documentcloud.github.com/backbone/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

There are two files we’ll be working with: 5x5client.coffee and 5x5server.coffee.
Let’s start with the server.

5x5server.coffee

We’re going to build our server on the popular Connect framework.5 Connect
extends Node’s own net module and is in turn extended by more robust
frameworks such as Express and Zappa. For more sophisticated apps, you
should definitely take a look at those other frameworks, which add niceties
such as DSLs for defining URL routes. However, for our single-page app,
Connect will do just fine. Let’s install it:

$ npm install connect

(Be sure to either run that command from the project directory or do a
global install by adding the -g flag.)

Now let’s start our server code by creating a Connect server instance:

Download Nodejs/5x5/5x5server.coffee
connect = require 'connect'

app = connect.createServer(
connect.compiler(src: __dirname + '/client', enable: ['coffeescript']),
connect.static(__dirname + '/client'),
connect.errorHandler dumpExceptions: true, showStack: true

)

port = 3000
app.listen port
console.log "Browse to http://localhost:#{port} to play"

io = require 'socket.io'
socket = io.listen app
socket.on 'connection', (client) ->

if assignToGame client
client.on 'message', (message) -> handleMessage client, message
client.on 'disconnect', -> removeFromGame client

else
client.send 'full'

assignToGame = (client) ->
idClientMap[client.sessionId] = client
return false if game.isFull()
game.addPlayer client.sessionId
if game.isFull() then welcomePlayers()
true

5. http://senchalabs.github.com/connect/

Project: Multiplayer 5x5 • 98

http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/5x5server.coffee
http://senchalabs.github.com/connect/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

removeFromGame = (client) ->
delete idClientMap[client.sessionId]
game.removePlayer client.sessionId

welcomePlayers = ->
players = [game.player1, game.player2]
info = {players, tiles: game.grid.tiles, currPlayerNum: game.currPlayer.num}
for player in players

playerInfo = extend {}, info, {yourNum: player.num}
idClientMap[player.id].send "welcome:#{JSON.stringify playerInfo}"

handleMessage = (client, message) ->
{type, content} = typeAndContent message
if type is 'move'

return unless client.sessionId is game.currPlayer.id # no cheating!
swapCoordinates = JSON.parse content
{moveScore, newWords} = game.currPlayer.makeMove swapCoordinates
result = {swapCoordinates, moveScore, newWords, player: game.currPlayer}
socket.broadcast "moveResult:#{JSON.stringify result}"
game.endTurn()

typeAndContent = (message) ->
[ignore, type, content] = message.match /(.*?):(.*)/
{type, content}

extend = (a, others...) ->
for o in others

a[key] = val for key, val of o
a

While we could use Connect in conjunction with Apache or nginx, it’s per-
fectly capable of serving our static files (in the client subdirectory) on its own.
We just have to ask it to do so in its configure block. We’ll also throw in an
error handler while we’re at it; otherwise, exceptions would just be silently
swallowed:

Download Nodejs/5x5/5x5server.coffee
app = connect.createServer(

connect.compiler(src: __dirname + '/client', enable: ['coffeescript']),
connect.static(__dirname + '/client'),
connect.errorHandler dumpExceptions: true, showStack: true

)

We only need to do one more thing in order to start our server: tell it which
port to run on, via the listen function. The choice of port is largely arbitrary;
in production, we’d most likely want to use port 80 (the standard for HTTP),
but to avoid potential conflicts, let’s use 3000:

Project: Multiplayer 5x5 • 99

http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/5x5server.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Download Nodejs/5x5/5x5server.coffee
port = 3000
app.listen port
console.log "Browse to http://localhost:#{port} to play"

If we just run what we’ve got and head to http://localhost:3000/ in our browser,
we’ll be automatically served index.html. Now we just need to add the means
to talk to our client code. But how? When one player performs an action,
both players need to be informed of the results. Ajax is ill-suited to that sort
of thing; what we need is a way to broadcast data from the server to several
clients at once, at any time.

Fortunately, a new technology called WebSocket provides exactly that. A
Node library called Socket.IO makes this a breeze; plus, it automatically
falls back on other protocols in browsers that don’t yet have WebSocket
support.

We’ll install Socket.io in trusty npm fashion:

$ npm install socket.io

And now we’ll use it on the server:

Download Nodejs/5x5/5x5server.coffee
io = require 'socket.io'
socket = io.listen app
socket.on 'connection', (client) ->

if assignToGame client
client.on 'message', (message) -> handleMessage client, message
client.on 'disconnect', -> removeFromGame client

else
client.send 'full'

Now each time a browser connects to the server, we get a new Socket.io client
instance. We implement two callbacks: one for when the client sends a
message (that is, a move) and another for when they disconnect. We also
assign the client to a game immediately.

For simplicity, this server implementation only hosts one game at a time,
but the game state has been encapsulated by a Game class, so it should be
simple to extend the project to a multigame server. That gives us just two
variables with module scope (other than the functions, of course): the game
itself and a map from IDs to clients.

Download Nodejs/5x5/5x5server.coffee
game = new Game
idClientMap = {}

Project: Multiplayer 5x5 • 100

http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/5x5server.coffee
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/5x5server.coffee
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/5x5server.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Each Player instance now has an id attribute, so when we need to send a
message to a particular player, we use idClientMap to get their client object.
Here’s how we add a new client to the game:

Download Nodejs/5x5/5x5server.coffee
assignToGame = (client) ->

idClientMap[client.sessionId] = client
return false if game.isFull()
game.addPlayer client.sessionId
if game.isFull() then welcomePlayers()
true

Once the game has two players, we send each of them a welcome message
with the list of tiles and, in case someone arrives midgame, the scores:

Download Nodejs/5x5/5x5server.coffee
welcomePlayers = ->

players = [game.player1, game.player2]
info = {players, tiles: game.grid.tiles, currPlayerNum: game.currPlayer.num}
for player in players

playerInfo = extend {}, info, {yourNum: player.num}
idClientMap[player.id].send "welcome:#{JSON.stringify playerInfo}"

Notice that extend in there? That’s a small utility for adding the properties
of one object to another. It’s equivalent to _.extend from Underscore.js:

Download Nodejs/5x5/5x5server.coffee
extend = (a, others...) ->

for o in others
a[key] = val for key, val of o

a

The only thing that’s left is to handle player moves:

Download Nodejs/5x5/5x5server.coffee
handleMessage = (client, message) ->

{type, content} = typeAndContent message
if type is 'move'

return unless client.sessionId is game.currPlayer.id # no cheating!
swapCoordinates = JSON.parse content
{moveScore, newWords} = game.currPlayer.makeMove swapCoordinates
result = {swapCoordinates, moveScore, newWords, player: game.currPlayer}
socket.broadcast "moveResult:#{JSON.stringify result}"
game.endTurn()

Notice that we use the client’s unique session ID (provided by Socket.io) as
a simple security check to prevent one player from making the other player’s
move. After we’ve calculated the results of the move, we use socket.broadcast,
a handy shorthand when we want to send the same message to every con-
nected client.

Project: Multiplayer 5x5 • 101

http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/5x5server.coffee
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/5x5server.coffee
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/5x5server.coffee
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/5x5server.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

5x5client.coffee

So how do we interact with Socket.io from the client? Well, handily, Socket.io
provides us with a client library. We just have to include it:

Download Nodejs/5x5/client/index.html
<script type="text/javascript" src="/socket.io/socket.io.js"></script>

If you’re exceptionally nosy, you might have noticed that there is no file
called socket.io.js in our static directory. And yet, if you request it from the
server, it’s there!

It turns out that the server-side Socket.io library automagically serves its
own client library. Of course, in production you’d want to minify and con-
catenate that script along with all your other scripts, but for development,
the feature is very handy. If you update to a new version of Socket.io on the
server side, then you won’t have to worry about serving the new client
library—it’s taken care of for you.

So, how do we actually use it? Well, it’s actually quite similar to what we
wrote for the server:

Download Nodejs/5x5/client/5x5client.coffee
$(document).ready ->

$('#grid li').live 'click', tileClick
socket = new io.Socket()
socket.connect()
socket.on 'connect', -> showMessage 'waitForConnection'
socket.on 'message', handleMessage

We need to handle two types of messages: the initial welcome and the result
of a move:

Download Nodejs/5x5/client/5x5client.coffee
handleMessage = (message) ->

{type, content} = typeAndContent message
switch type

when 'welcome'
{players, currPlayerNum, tiles, yourNum: myNum} = JSON.parse content
startGame players, currPlayerNum

when 'moveResult'
{player, swapCoordinates, moveScore, newWords} = JSON.parse content
showMoveResult player, swapCoordinates, moveScore, newWords

startGame = (players, currPlayerNum) ->
for player in players

$("#p#{player.num}name").html player.name
$("#p#{player.num}score").html player.score

drawTiles()
if myNum is currPlayerNum

Project: Multiplayer 5x5 • 102

http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/client/index.html
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/client/5x5client.coffee
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/5x5/client/5x5client.coffee
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

startTurn()
else

endTurn()

showMoveResult = (player, swapCoordinates, moveScore, newWords) ->
$("#p#{player.num}score").html player.score
$notice = $('<p class="notice"></p>')
if moveScore is 0

$notice.html "#{player.name} formed no words this turn."
else

$notice.html """
#{player.name} formed the following #{newWords.length} word(s):

#{newWords.join(', ')}

earning #{moveScore / newWords.length}x#{newWords.length}
= #{moveScore} points!

"""
showThenFade $notice
swapTiles swapCoordinates
if player.num isnt myNum then startTurn()

And that’s it! The rest of the code is pretty similar to the version from the
last chapter—simpler, in fact, since the game logic is all on the server.

Running coffee 5x5server.coffee gives you this invitation:

Browse to http://localhost:3000 to play

Open up two browsers, point them both to that address, and you’ll get
something like Figure 6, Playing multiplayer 5x5, on page 104.

Is That All?

Gee whiz—you’ve built a fully buzzword-compliant multiplayer gaming app
with Node.js and WebSocket! It may not be the next viral sensation on
YouFace, but it demonstrates that using cutting-edge web technologies can
actually be pretty easy.

Of course, for larger-scale apps, you’d want to use a more robust web
framework (like brunch or the aforementioned Zappa);6 hook in a database
(Node.js already has first-rate bindings for MySQL, MongoDB, and Redis);
and add in logging, tracking, and performance-monitoring (perhaps with
the sleek, Node-powered Hummingbird).7 It’s just amazing how vibrant the
Node ecosystem is—and it hasn’t even hit 1.0 yet.

6. http://brunchwithcoffee.com/
7. http://projects.nuttnet.net/hummingbird/

Project: Multiplayer 5x5 • 103

http://brunchwithcoffee.com/
http://projects.nuttnet.net/hummingbird/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Figure 6—Playing multiplayer 5x5

6.5 Client, Server—What’s the Difference?

We’ve only scratched the surface of Node.js in this chapter. Despite its youth,
Node is already a powerful framework with a thriving ecosystem, making
CoffeeScript a viable language well beyond the browser.

Node has attracted a lot of hype in part because of its evented architecture,
built around nonblocking IO, which makes it an efficient alternative to web
platforms that rely on multithreading. But perhaps more exciting for the
code-monkey masses is that we can now write for our client and server in
the same language and even migrate code from one to the other. The tech-
niques this allows are only beginning to be explored, ranging from testing
to templating to validation. Who knows what’s next?

That, alas, is beyond the realm of this humble book, which I hereby congrat-
ulate you on completing! You’ve now learned to apply CoffeeScript to both
front- and back-end environments, using its power to provide shorter,
clearer code than even the greatest JavaScripter could produce (nothing
personal, Resig).

Consider yourself a graduate of CoffeeScript University, and remember:
virtus brevitas!

Client, Server—What’s the Difference? • 104

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

6.6 Exercises

1. What will this code do?

countdown = 10
h = setInterval (-> countdown--), 100
do (->) until countdown is 0
clearInterval h
console.log 'Surprise!'

(Bonus exercise: Rewrite this to do what the coder likely intended.)

Exercises • 105

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

APPENDIX 1

Answers to Exercises
A1.1 Functions, Scope, and Context

Answers to Section 2.9, Exercises, on page 34:

1. Functions in CoffeeScript return the value of their last expression—in
this case, the return value of the splice method. To change the return
value, just add a new line, like so:

clearArray = (arr) ->
arr.splice 0, arr.length
arr

This returns the now-empty arr. To have the function return nothing,
use this:

clearArray = (arr) ->
arr.splice 0, arr.length
return

2. You can write this one of two ways, either of which will do just fine.
Here’s the first:

run = (func, args...) -> func.apply this, args

Here’s the second:

run = (func, args...) -> func.call this, args...

Note that the use of this allows a context to be passed in by calling run
in the desired context.

3. The postfix operators (if/unless and for/while/until) are the only major
exceptions to the rule that implicit parentheses go to the end of the line.
For example, all of the following lines are equivalent:

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

return abortMission warning if warning?
return abortMission(warning) if warning?
if warning? then return abortMission warning
if warning? then return abortMission(warning)

Adding explicit parentheses that go to the end of the line would change
the meaning considerably:

return abortMission(warning if warning?)

Now we return and call abortMission no matter what! The expression warning
if warning? is evaluated, but to little effect (it converts null to undefined but
leaves all other values of warning untouched).

4. CoffeeScript doesn’t allow space between a function and its explicit
parentheses because this would allow parentheses around an expression
to radically change its meaning. Here are some examples:

f g h

This expression really means the following:

f(g(h))

Compare that meaning with this expression:

f (g) h

Here the parentheses really mean this:

f(g)(h)

CoffeeScript’s rule is that if there’s whitespace after any identifier (and
something other than a postfix operator after the whitespace), then that
identifier is a function with implicit parentheses.

5. foo.bar.baz() runs in the foo.bar context. @hoo runs in this (also known as @).
@hoo.rah() runs in @hoo.

6. what.x and @x are, of course, equivalent if and only if what is this. Again,
it’s perfectly possible for what.x and @x to refer to the same object, but
what.x = y will not overwrite @x unless what is this.

The code example can be solved by writing xInContext.call what.

7. The code fails because of the x = x, which is a no-op. Here’s the problem
part again:

x = true
showAnswer = (x = x) ->
console.log if x then 'It works!' else 'Nope.'

showAnswer()

Functions, Scope, and Context • 108

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Recall that the default argument syntax a = b is equivalent to placing a
?= b at the top of the function body; there’s no way to bring the x from
the outer scope into the function. The solution is to either use showAnswer
x or to ditch the shadowing.

A1.2 Collections and Iteration

Answers to Section 3.9, Exercises, on page 56:

1. When you use slice, the result is a new array containing some or all of
the items from the original array; adding, removing, or replacing items
in the new array will not affect the original. That’s why you’ll see
arr.slice[0..] in a lot in functions—when someone passes you an array and
you want to modify it for your own purposes, working with a copy is just
common courtesy.

2. In the following code it’s important to realize that once is only called,
well, once():

once = ->
if once.hasRun

null
else

once.hasRun = true
[1, 2, 3]

console.log x for x in once()

That last line is equivalent to this:

onceResult = once()
console.log x for x in onceResult

In short, CoffeeScript takes care of caching the function result automat-
ically in a for loop. If you want to call a function on each loop iteration,
you should use while or until.

3. Look at this section:

for x in [1, 2]
setTimeout (-> console.log x), 50

This gives the following output:

2
2

What’s going on? The key here is that there’s only one x variable. The
timeout is invoked after the loop has finished and x has been set to 2;
it doesn’t matter what the value of x was when the function was declared.

Collections and Iteration • 109

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Changing the timeout to 0 has no effect because setTimeout always adds
its target to the “event queue,” which isn’t invoked until after all other
code has run.

The easiest solution is to use do to capture the value of x in each loop
iteration:

for x in [1, 2]
do (x) ->

setTimeout (-> console.log x), 50

4. Here’s a function that checks whether a particular value is attached to
the given object:

objContains = (obj, match) ->
for k, v of obj

if v is match
return true

false

Note that k is unused but necessary; the of syntax always goes in the
order key, value, and we want that value.

In practice, you should be writing your code so that this sort of loop is
unnecessary. The whole point of the hash structure is that fetching
values is fast when you know the corresponding key. If you’re frequently
checking whether a value is in a hash or not, you should be using a
different data structure.

5. To run a function once and then repeat it until a condition is called, we
can write this:

doAndRepeatUntil = (func, condition) ->
func.call this
func.call this until condition()

6. To get the length of the shortest string in our wordList array, we can write
the following:

Math.min.apply Math, (w.length for w in wordList)

The comprehension (w.length for w in wordList) generates a list of the length
of each word in wordList. Using apply passes it to Math.min as an enormous
list of arguments. (The first argument to apply ensures that Math.min runs
in the Math context, just as it would if we called Math.min directly.) This
isn’t the most efficient approach, but it’s very succinct.

Collections and Iteration • 110

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

A1.3 Modules and Classes

Answers to Section 4.7, Exercises, on page 72:

1. Why doesn’t this give us the same old aphorism twice?

root = global ? window

root.aphorism = 'Fool me 8 or more times, shame on me'

do restoreOldAphorism = ->
aphorism = 'Fool me once, shame on you'
console.log aphorism

console.log aphorism

The issue here is that restoreOldAphorism declares a variable called aphorism
in its own scope. The compiler doesn’t realize that setting root.aphorism
has created a variable with the same name in the global scope; its
scoping rules only apply to simple assignments of the form aphorism =

It’s fine to read root.aphorism as just aphorism, but assignments have to be
made to root.aphorism.

2. The following code is confusing because it uses @wishesLeft to refer to
both a property of the prototype and a property of the instance:

Genie = ->
Genie::wishesLeft = 3

Genie::grantWish = ->
if @wishesLeft > 0

console.log 'Your wish is granted!'
@wishesLeft--

The result is that each genie will grant three wishes, rather than enforc-
ing a total limit of three wishes.

To understand why, consider this:

@wishesLeft--

This is equivalent to @wishesLeft = @wishesLeft - 1. The first time this line is
run on a Genie instance (let’s call it genie1), it reads Genie::wishesLeft, sub-
tracts 1 from it, and then assigns that value to a new instance property,
genie1.wishesLeft!

You can read prototype properties from an object as if the property were
attached to the object, but when you write obj.x = y, you’re always setting
the value of a property on the object itself (potentially shadowing a pro-
totype property).

Modules and Classes • 111

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

As a rule, you should never use the same name for a prototype property
and an instance property. The best solution in this case is to replace
both Genie::wishesLeft and @wishesLeft with Genie.wishesLeft.

3. The answer is based on the definitions given:

class Season
class Spring extends Season

Both (new Season).__proto__.__proto__ and (new Spring).__proto__.__proto__.__proto__
are equal to {}.__proto__, the default object prototype.

4. Bound functions on classes work as you were probably hoping. When
you call foo = new Foo(), instance methods defined on Foo with => are auto-
matically bound to the instance context.

This is the behavior you want 95 percent of the time. However, there is
a overhead from bound functions (in both code size and instantiation
time), so they may not be suitable for performance-critical code.

A1.4 Web Interactivity with jQuery

Answers to Section 5.7, Exercises, on page 88:

1. This line of code will hide all current list items contained by #menu, but
it will not affect those created in the future:

$('#menu li').hide()

To hide all current and future list items in #menu, there are two things
we need to do. First, we modify our stylesheet to provide a special class
for #menu, hideItems:

#menu.hideItems li {
visibility: hidden;

}

With the aid of that bit of CSS, hiding all menu items is as easy as using
jQuery’s addClass method:

$('#menu').addClass 'hideItems'

Now all current and future menu items shall be unseen until we call
removeClass.

2. There are two things worth noticing about this code:

$('a').click(destroyWorld).unbind('click')

Web Interactivity with jQuery • 112

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

First, destroyWorld will never get called, because the click event handler is
unbound immediately after it’s bound. Second, the unbind here will remove
all click event handlers from all <a> elements.

3. Of the four selectors, the odd one out is #3, $('.redShirt, #awayTeam').die():

$('#awayTeam .redShirt').die()
$('#awayTeam').find('.redShirt').die()
$('.redShirt, #awayTeam').die()
$('.redShirt', $('#awayTeam')).die()

This would kill all live events on all elements with the redShirt class and
on the awayTeam element as well, rather than just on the redShirt-class
members of the awayTeam.

4. The following code will, in fact, change drJekyll’s ID to mrHyde.

$('#drJekyll').click ->
alert 'Now I shall transform!'
$('#drJekyll').attr 'id', 'mrHyde'
$('#drJekyll').unbind 'click'

But annoyingly, it’ll shout “Now I shall transform!” every time it’s clicked.
The problem is that the '#drJekyll' selector doesn’t match anything after
the ID change. Moving the unbind to the top of the click function would be
one solution. Using $(this) instead of $('#drJekyll') would be even better.

A1.5 Server-Side Apps with Node.js

Answers to Section 6.6, Exercises, on page 105:

1. The code given is, alas, an infinite loop:

countdown = 10
h = setInterval (-> countdown--), 100
do (->) until countdown is 0
clearInterval h
console.log 'Surprise!'

No matter how many hundreds of milliseconds pass, countdown will never
decrease, because the loop code never finishes running. Here’s a working
version:

countdown = 10
decreaseCountdown = ->
countdown--
if countdown is 0

clearInterval h
console.log 'Surprise!'

h = setInterval decreaseCountdown, 100

Server-Side Apps with Node.js • 113

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Note that it’s not a problem that h doesn’t exist yet when we write the
line clearInterval h. When the line is run, the program will see that there’s
no h in the current scope, check the outer scope, and thus find the
handle returned by setInterval. Such nonlinear thinking is, alas, the price
we pay to be rid of the scourge of threads.

Server-Side Apps with Node.js • 114

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

APPENDIX 2

Ways of Running CoffeeScript
Although CoffeeScript’s ecosystem is young, there are a vast number of tools
out there for compiling and running CoffeeScript code. We already covered
the official command-line compiler in Section 1.3, Meet 'coffee', on page 6;
this appendix covers a few of the other options I recommend. For a more
comprehensive list, visit http://github.com/jashkenas/coffee-script/wiki.

A2.1 Web Consoles

If you head over to http://coffeescript.org, you’ll find not only a ton of exam-
ples but also a button labeled “Try CoffeeScript.” Click it, and a live console
pops out. You’ll want to use a browser with a developer console so that you
don’t have to put up with alert for output.1 Try typing this:

console.log ['a', 'b', 'c'][0...-1]

You’ll instantly see the compiled JavaScript appear on the right:

console.log(['a', 'b', 'c'].slice(0, -1));

Click Run and you’ll see the result ["a", "b"] in your browser’s console.

“Try CoffeeScript” is great when you want to see CoffeeScript and compiled
JavaScript side-by-side, but what if you want more of a REPL experience,
maybe one that lets you try CoffeeScript along with libraries like jQuery and
Underscore.js? Then check out JS Console.2 Although limited (there’s cur-
rently no way to write multiline expressions), it’s very slick, and there’s even
an iPhone version!

You might be surprised at how fast these consoles are. With a web-based
console for Ruby or Python, say, all the commands have to run remotely on

1. http://getfirebug.com/firebuglite
2. http://jsconsole.com/

http://github.com/jashkenas/coffee-script/wiki
http://coffeescript.org
http://getfirebug.com/firebuglite
http://jsconsole.com/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

the server. But these sites run the CoffeeScript compiler in your browser.
And you can do this, too—see the next section.

A2.2 Running CoffeeScript in Your Web App

Wouldn’t it be nice if you could include CoffeeScript directly in your HTML
without having to compile it to JavaScript first? Ah, but you can!

<script type="text/coffeescript">
alert 'Wow, this CoffeeScript is right in your HTML!'

</script>

The only catch is that you have to include a special version of the Coffee-
Script compiler, which weighs in at a whopping 170 KB.3

Since it simplifies development, we used the browser-based compiler for our
example project in Chapter 5, Web Interactivity with jQuery, on page 75. But
unless you’re building your own CoffeeScript console, this approach isn’t
recommended for production use. In addition to the sheer size of the com-
piler, all CoffeeScript files are loaded via Ajax after the compiler has been
loaded.

The next few tools we’ll be looking at are aimed at bridging that gap between
easy web development and efficient deployment.

A2.3 CoffeeScript on Rails

CoffeeScript owes a lot to Ruby. Its first compiler was written in Ruby; many
of its earliest users were also Rubyists; and now the language enjoys the
support of the preeminent Rubyists at 37signals. In April 2011, it was
announced that CoffeeScript support will be included in Rails 3.1 via
Sprockets 2. As of this writing, neither has been released, but you can check
out the latest Sprockets at https://github.com/sstephenson/sprockets.

Earlier versions of Rails can still enjoy first-class CoffeeScript integration,
thanks to a plugin called Barista:4 you put your .coffee files in one directory,
and the corresponding .js files are automatically generated as needed on
each page request. You can also embed CoffeeScript in ERB and Haml
templates.

Barista goes even further by allowing you to package and pull in CoffeeScript
from gems. This is a terrific way to split large projects into reusable, cleanly
versioned components. Plus, it’s 100 percent Heroku-compatible; just plug

3. http://jashkenas.github.com/coffee-script/extras/coffee-script.js
4. http://github.com/Sutto/barista

Running CoffeeScript in Your Web App • 116

https://github.com/sstephenson/sprockets
http://jashkenas.github.com/coffee-script/extras/coffee-script.js
http://github.com/Sutto/barista
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

in therubyracer-heroku, a JavaScript interpreter designed to run in any
Ruby environment.5 (The same applies to Rails 3.1 apps; both Barista and
Rails 3.1 employ the same gem to wrap around the CoffeeScript compiler.)6

One bummer with Barista (and most other web framework integrations for
CoffeeScript) is that if there’s a syntax error in your code, you won’t find
out about it until you refresh the page and get broken JavaScript. To help
with this, I wrote a plugin that extends Barista to provide a Growl notification
whenever your CoffeeScript fails to compile.7

A2.4 CoffeeScript via Middleware

Wouldn’t it be nice if your app could think it’s using plain old JavaScript,
while the server handles the CoffeeScript compilation transparently? Well,
with middleware—software that fits snugly between your web framework
and the server—all these dreams, and more, can come true!

In the Ruby world, the middleware of choice is Rack. The most mature Rack
integration is the aptly named rack-coffee.8 It’s compatible with Rails,
Sinatra, and all other major Ruby web frameworks (though Sinatra has
actually had built-in CoffeeScript support since October 2010). More recently,
the aforementioned Barista has been modified to run in any Rack-based
framework, not just Rails.

Meanwhile, over in the land of Python, CoffeeCup offers some first-class
CoffeeScript support for Django, Pylons, CherryPy, and countless other
WSGI-based frameworks.9 If having significant whitespace in both your front
and back end is important, that’s a great option. Of course, another option
would be to write your front and back end in the same language entirely.

A2.5 CoffeeScript on Node.js

Recall that .coffee files can be run directly on Node.js using the coffee com-
mand. So on the back end, no compilation is needed. The real trick is serving
compiled JavaScript for the front end.

Fortunately, Connect (the standard core for Node.js web frameworks) comes
with middleware that does this automatically. It just takes a little bit of
configuration. You need to hook in Connect’s compiler and static middlewares,

5. https://github.com/aler/therubyracer-heroku
6. https://github.com/josh/ruby-coffee-script
7. http://github.com/TrevorBurnham/barista_growl
8. http://github.com/mattly/rack-coffee
9. http://github.com/dsc/coffeecup

CoffeeScript via Middleware • 117

https://github.com/aler/therubyracer-heroku
https://github.com/josh/ruby-coffee-script
http://github.com/TrevorBurnham/barista_growl
http://github.com/mattly/rack-coffee
http://github.com/dsc/coffeecup
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

in that order, like so. (We used this technique in Chapter 6, Server-Side
Apps with Node.js, on page 91.)

compiler = connect.compiler src: coffeeDir, enable: ['coffeescript']
static = connect.static coffeeDir
connect.createServer compiler, static

In this example, .coffee files in coffeeDir will automatically be compiled and
served as .js files.

Some Node frameworks include preconfigured CoffeeScript-serving power.
See, for instance, brunch and Zappa.

While it seems like everyone and their dog is developing web apps with Rails
or Django these days, there are still plenty of sites that just don’t need a
back end at all. Wouldn’t it be nice to be able to leverage CoffeeScript—along
with Haml and Sass, perhaps—to develop ordinary websites, all while
generating standards-compliant HTML/CSS and minified JavaScript for
deployment?

A2.6 Rapid Websites with Middleman

Luckily, there’s Thomas Reynolds’s Middleman.10 If you’ve already got Ruby
and RubyGems installed, then getting up and running with Middleman is
as easy as doing this:

$ gem install middleman
$ mm-init myProject
$ cd myProject
$ mm-server

Now head to http://localhost:4567, where your site is up and running. Then
modify the template files in the view directory and refresh your browser;
repeat as needed until you’re ready to deploy.

Middleman expects CoffeeScript files to be saved anywhere in the view folder
with the extension .js.coffee. For instance, if you put awesome.js.coffee in
view/scripts, then the corresponding <script> tag would refer to scripts/awesome.js.
No such file exists, mind you—it’s generated automatically by the server on
every request. This means that when you change your CoffeeScript code
and refresh the browser, the page will always be served with the latest and
greatest JavaScript.

When you’re ready to deploy, just run this:

$ mm-build

10. http://middlemanapp.com/

Rapid Websites with Middleman • 118

http://localhost:4567
http://middlemanapp.com/
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

All the HTML/CSS/JavaScript you need will show up in the build folder.
Upload that folder to a server, and your site is live!

A2.7 CoffeeScript for System Scripts

Before we finish this appendix, did you know that you can use CoffeeScript
for the kinds of system tasks that you’d normally associate with Perl or
Python? Just start your file with a “shebang” line that gives the path to coffee
(sorry, Windows folks, this only works on Unix-y systems):

#!/usr/bin/env coffee
console.log 'Hello, world!'

Ensure that the script is executable (chmod +x helloscript.coffee); then you can
run it with either sh helloscript.coffee or ./helloscript.coffee. (The familiar coffee hello-
script.coffee will also still work.)

Remember, this script will only run on systems where the CoffeeScript
compiler is installed and on the PATH.

That concludes our tour of the CoffeeScript build tool ecosystem, but no
doubt many other awesome projects have sprung up since the time of this
writing! Be sure to check out http://github.com/jashkenas/coffee-
script/wiki for an up-to-date list, and follow @CoffeeScript on Twitter to
keep tabs on new developments.

CoffeeScript for System Scripts • 119

http://github.com/jashkenas/coffee-script/wiki
http://github.com/jashkenas/coffee-script/wiki
http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

APPENDIX 3

Cheat Sheet for JavaScripters
This cheat sheet summarizes most of the keywords and operators that
CoffeeScript provides in terms of their JavaScript equivalents. In the tables
below, Symbol refers to the preferred style in CoffeeScript, while Alias refers
to a less-preferred alternative. Often, the alias is the same in JavaScript.
For instance, or is recommended over || in CoffeeScript, but both are allowed.

Occasionally, the JavaScript code given is slightly simplified and differs from
the CoffeeScript in some edge cases; these are clarified in notes at the foot
of each table.

Symbols that are unchanged from JavaScript, such as the math and bitwise
operators, are not mentioned here.

A3.1 Boolean Operators

JavaScriptAliasSymbol

!x!xnot x

x || yx || yx or y

x = x || yx ||= yx or= y

x && yx && yx and y

x = x && yx &&= yx and= y

A3.2 The Existential Operator

JavaScriptAliasSymbol

typeof x != 'undefined' && x !== nullx?

if (typeof func === 'function') {func()}func?()

typeof x !== 'undefined' && x !== null ? x.y : undefinedx.y if x?x?.y

if (typeof x === 'undefined' || x === null) {x=y}x = y unless x?x ?= y

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

A3.3 Context and Prototype Accessors

JavaScriptAliasSymbol

thisthis@

this.xthis.x@x

this['x']this['x']@['x']

obj.prototype.yobj.prototype.yobj::y

obj.prototype['y']obj.prototype['y']obj::['y']

A3.4 Function Definitions

JavaScriptSymbol

func = function(a) {...}func = (a) -> ...

func = bind(function(a) {...}, this)*func = (a) => ...

*Where bind returns a wrapper that runs the function in the given context.
See How Does => Work?, on page 25.

A3.5 Conditionals

JavaScriptAliasSymbol

if (x) {y}if x then y*y if x

if (!x) {y}y if not xy unless x

a = x ? y : undefinedif x then a = y else a = un-
defined

a = if x then y

a = x ? y : zif x then a = y else a = za = if x then y else z

See Polymorphism and
Switching, on page 66.

switch x

*Indentation may be used instead of then.

A3.6 Property Existence

JavaScriptSymbol

x in objx of obj

y.indexOf(x) >= 0*x in arr

*CoffeeScript actually uses the indexOf method directly from the Array proto-
type; and if Array.prototype.indexOf is undefined (as in Internet Explorer 8 and
below), an equivalent function is used instead.

Context and Prototype Accessors • 122

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

A3.7 Iteration

JavaScriptAliasSymbol

for (x in obj) {f()}for x of obj then f()f() for x of obj

for (var i = 0; i < arr.length; i++) {f()}*for x in arr then f()f() for x in arr

for (var i = a; i <= b; i++) {f()}**for x in [a..b] then f()f() for x in [a..b]

for (var i = a; i < b; i++) {f()}**for x in [a...b] then f()f() for x in [a...b]

*arr.length is cached in the CoffeeScript version, so that changes made to the
array during the loop will not affect the range of iteration.

**Assuming a < b. If a > b, then the loop counts downward instead of upward.

Iteration • 123

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

APPENDIX 4

Bibliography
[Ark11] Assaf Arkin. Zombie.js. Labnotes.org, http://zombie.labnotes.org/, 2011.

[Ash11] Jeremy Ashkenas. Docco. Github, https://github.com/, 2011.

[Hav11] Marijn Haverbeke. Eloquent JavaScript: A Modern Introduction to Program-
mings. No Starch Press, San Francisco, CA, 2011.

[NM11] Nishiyama Nishiyama and Maurice Machado. Zappa. Github,
https://github.com/, 2011.

[Sei09] Peter Seibel. Coders at Work: Reflections on the Craft of Programming.
Apress, New York City, NY, 2009.

[Ste11] Sam Stephenson. Eco. Github, https://github.com/, 2011.

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Index
SYMBOLS
% (modulus), 16

-> (function operator), 13

.. (inclusive range), 41

... (exclusive range), 41

... (splat), 28–29

== (equality check), 17

=> (bound function operator),
24–25

? (existential operator), 26

?= (compound assignment),
26

@ (context shorthand), 21

@ (property arguments), 24

` (backtick), xviii

A
Ajax, 88

anonymous functions, 14, 96

apply method, 22–23

arguments
argument list syntax, 14
default, 25–27
property, 24
splatted, 28–29

arguments object, 15

array comprehensions, 47–48

array pattern matching, 48

arrays
defining, 40
iterating over, 44–46
slicing and splicing, 42–

43

asynchronous functions, 94–
97

B
Backbone.js framework, 97

Barista, 116–117

boolean operators, 27

bound functions, 23–25

brunch framework, 103, 118

C
Cakefiles, 9

call method, 22–23

chained comparisons, 32

CherryPy, 117

classes, 59, 63–68

client-server architecture, 97–
104

Cloud9, 5

coffee compiler
command-line options, 6–

7
continuous compilation,

7

CoffeeCup, 117

CoffeeScript
community online, xx
compiler, 6–9
debugging, 9–10
documentation, xxi
embedding in HTML, 116
getting latest, 5
installing, 1–4
vs. JavaScript, xvii
vs. JSON, 39
and middleware, 117
on Node.js, 117
origin of, xv
on Rails, 116–117
Ruby as inspiration,

xviii, 14, 41, 67

significant whitespace,
17, 39

for system scripts, 119
web consoles, 115–116

collections, iterating over, 43–
46

compound assignment, 26

comprehensions, 47–48

conditionals, 17

Connect framework, 98–100,
117

console.log function, 9

constructors, 22, 61–64

context, 21–24

Cygwin, 2

D
database bindings, 103

debug-mode logging, 9

default arguments, 25–27

destructuring assignment,
48–50

Django, 117

do, 14, 45, 96

Docco, 92

DOM (Document Object Mod-
el), 76–78

duck typing, 67

E
Eco, 92

editors, 5–6

else, 17

Emacs, 5

equality, 17

event handlers, 79–80

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

existential operator, 26
chaining, 40

exports, 92–93

extends, 65–66

F
Firebug Lite, 2, 115

5x5 project
browser version, 80–87
with classes, 68–72
console version, xx, 55
CSS stylesheet, 82–83
game rules, xix
initialization, 53–55
input parser, 29–33
multiplayer, 97–104
random grid, 51–52
scoring, 52–53
word list, 50

for, 44–46

functions
anonymous, 14, 96
arguments, 14, 24–29
asynchronous, 94–97
bound, 23–25
as constructors, 22
declaring, 13, 15
implicit parentheses, 16
naming, 14
return, 14
scope, 19–20

G
gedit, 5

global variables, 60–62

GWT, xv

H
hasOwnProperty method, 44, 63

hashes, 37–39

Hummingbird, 103

I
if-else, 17

implicit parentheses, 16

indentation, 17

inheritance, 65–66

input validation, 31

instanceof, 67

IntelliJ IDEA, 5

IO, blocking vs. nonblocking,
29, 50

is, 16–17

J
jEdit, 5

jQuery
chaining, 80
getter/setter functions,

77
origin of, 75
selecting DOM elements,

77–79
simple event binding, 79–

80

JavaScript
building objects, 37–38
embedding in Coffee-

Script, xviii
inheritance, 65
namespaces, 8
origin of, xv
prototypes, 59, 61–65
for server-side apps, 91–

97

JavaScript Lint, xvi

JS Console, 115

jsdom, 88

JSON, embedding in Coffee-
Script, 38

L
lexical scope, 19

live method, 78, 80

M
Mac OS X

Homebrew, 2
installing Node, 2

Math object, 16

Middleman, 118–119

modules, 60–61, 92–93

modulus, 16

multiple processor support,
93

multithreading, 93–94

N
namespaces, 8, 60–61, 92–93

new, 22, 61

Node.js
blocking IO, 50
Connect, 98–100, 117
database bindings, 103
file system module, 50
installing, 2
jsdom, 88
logging libraries, 10
nonblocking IO, 29
root object, 60

server-side apps, 91–97
synchronous functions,

95

NODE_PATH, 4, 6

npm (Node Package Manager)
-g flag, 3
installing, 2

O
object pattern matching, 49

Objective-J, xv

objects
accessing properties, 38
building, in CoffeeScript,

39
building, in JavaScript,

37–38
iterating over properties,

43–45
JavaScript functions as,

xvi

or=, 27

own, 44

P
PATH, 3, 6

pattern matching, 48–50

polymorphism, 66–68

process, 30

property arguments, 24

Prototype.js framework, 41,
76

Pylons, 117

Python, 117

R
Rack, 117

Rails, and CoffeeScript, 116–
117

ranges, 41

readFileSync method, 50

REPL (Read-Eval-Print Loop),
8

require, 92–93

return, 14

root object, 60–62

Ruby, and CoffeeScript, xvi,
xviii, 14, 41, 67

S
scope, 18–20, 45, 96–97

selectors, 77–79

shadowing, 20

significant whitespace, 17, 39

• 128

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

simple event binding, 79–80

Sinatra, 117

slice, 42

soaks, 40

Socket.io, 100, 102

splats
in argument lists, 28–29
in function calls, 29

splice, 42

Sprockets, 116

stdin object, 30–31

strings
interpolation, 14
slicing, 43

switch, 67

system scripts, 119

T
TextMate, 5

this, 21–24

throw, 17

truthiness, 27

try...catch blocks, 17

types
built-in, 60
duck typing, 67
explicit checking, 16
type coercion, 16–17

U
unbind, 79

Underscore.js framework, 47

unless, 26

until, 46

V
V8, 91

validation, 31

variables
assigning functions to, 14
global, 60–62
scope of, 18–20
shadowing, 20

Vim, 5

W
web consoles, 115–116

WebSocket, 100

Windows, installing Node, 2

X
Xcode, 2

Z
Zappa framework, 92, 103,

118

Zombie.js, 92

• 129

http://pragprog.com/titles/tbcoffee/errata/add
http://forums.pragprog.com/forums/tbcoffee

Welcome to the New Web
The world isn’t quite ready for the new web standards, but you can be. Get started with
HTML5, CSS3, and brush up on your JavaScript today.

HTML5 and CSS3 are the future of web development,
but you don’t have to wait to start using them. Even
though the specification is still in development, many
modern browsers and mobile devices already support
HTML5 and CSS3. This book gets you up to speed on
the new HTML5 elements and CSS3 features you can
use right now, and backwards compatible solutions
ensure that you don’t leave users of older browsers
behind.

Brian P. Hogan
(280 pages) ISBN: 9781934356685. $33
http://pragmaticprogrammer.com/titles/bhh5

JavaScript is everywhere. It’s a key component of to-
day’s Web—a powerful, dynamic language with a rich
ecosystem of professional-grade development tools,
infrastructures, frameworks, and toolkits. This book
will get you up to speed quickly and painlessly with
the 35 key JavaScript tasks you need to know.

NEW: Part of the new Pragmatic Guide series

Christophe Porteneuve
(150 pages) ISBN: 9781934356678. $25
http://pragmaticprogrammer.com/titles/pg_js

http://pragmaticprogrammer.com/titles/bhh5
http://pragmaticprogrammer.com/titles/pg_js

Learn a New Language This Year
Want to be a better programmer? Each new programming language you learn teaches you
something new about computing. Come see what you’re missing.

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(300 pages) ISBN: 9781934356593. $34.95
http://pragmaticprogrammer.com/titles/btlang

Bill Karwin has helped thousands of people write better
SQL and build stronger relational databases. Now he’s
sharing his collection of antipatterns—the most com-
mon errors he’s identified out of those thousands of
requests for help.

Most developers aren’t SQL experts, and most of the
SQL that gets used is inefficient, hard to maintain, and
sometimes just plain wrong. This book shows you all
the common mistakes, and then leads you through
the best fixes. What’s more, it shows you what’s behind
these fixes, so you’ll learn a lot about relational
databases along the way.

Bill Karwin
(352 pages) ISBN: 9781934356555. $34.95
http://pragmaticprogrammer.com/titles/bksqla

http://pragmaticprogrammer.com/titles/btlang
http://pragmaticprogrammer.com/titles/bksqla

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/titles/tbcoffee
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/titles/tbcoffee

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-useWrite for Us:

+1 800-699-7764Or Call:

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/tbcoffee
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/tbcoffee
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-use

	Cover
	Table of Contents
	Foreword
	Acknowledgments
	Preface
	The New Kid in Town
	Who This Book Is For
	How This Book Is Organized
	About the Example Project: 5x5
	The CoffeeScript Community

	1. Getting Started
	Installing CoffeeScript
	Text Editors for CoffeeScript
	Meet 'coffee'
	Debugging CoffeeScript

	2. Functions, Scope, and Context
	Functions 101
	Scope: Where You See ’Em
	Context (or, “What Is 'this'?”)
	Property Arguments (@arg)
	Default Arguments (arg =)
	Splats (...)
	Project: 5x5 Input Parser
	Exercises

	3. Collections and Iteration
	Objects as Hashes
	Arrays
	Iterating over Collections
	Conditional Iteration
	Comprehensions
	Pattern Matching (or, Destructuring Assignment)
	Project: 5x5 Solitaire
	Exercises

	4. Modules and Classes
	Modules: Splitting Up Apps
	The Power of Prototypes
	Classes: Functions with Prototypes
	Inheritance with 'extends'
	Project: Refactoring 5x5
	Exercises

	5. Web Interactivity with jQuery
	The Tao of jQuery
	Manipulating the DOM
	Getting Selective
	Reacting to Events
	Project: Browser-Based 5x5
	Exercises

	6. Server-Side Apps with Node.js
	What Is Node.js?
	Modularizing Code with 'exports' and 'require'
	Thinking Asynchronously
	Project: Multiplayer 5x5
	Exercises

	A1. Answers to Exercises
	Functions, Scope, and Context
	Collections and Iteration
	Modules and Classes
	Web Interactivity with jQuery
	Server-Side Apps with Node.js

	A2. Ways of Running CoffeeScript
	Web Consoles
	Running CoffeeScript in Your Web App
	CoffeeScript on Rails
	CoffeeScript via Middleware
	CoffeeScript on Node.js
	Rapid Websites with Middleman
	CoffeeScript for System Scripts

	A3. Cheat Sheet for JavaScripters
	Boolean Operators
	The Existential Operator
	Context and Prototype Accessors
	Function Definitions
	Conditionals
	Property Existence
	Iteration

	A4. Bibliography
	Index

