Lisp NT#RE (REHHEIF)

Common LISP Hints
Geoffrey J. Gordon

{ggordon@cs. cmu. edu>

Friday, February 5, 1993

Modified by

Bruno Haible

<haible@na2s2. mathematik. uni—karlsruhe. de>

] R SRR -
pUE

{March. Liu@gmail. com>

Note: This tutorial introduction to Common Lisp was written for the
CMU environment, so some of the details of running lisp toward the end

may differ from site to site.

FE: XAy Common Lisp A[TZFEEERRT CMU

WEigS, ProdfEEsmsatr

LISP W] GE&AA 4015 EI XA .

Further Information

b -

The best LISP textbook I know of is

mailto:ggordon@cs.cmu.edu
mailto:haible@ma2s2.mathematik.uni-karlsruhe.de
mailto:March.Liu@gmail.com

Guy L. Steele Jr. Common LISP: the Language . Digital Press. 1984.

P T A if i) Lisp TEE 2.

Guy L. Steele Jr. Common LISP: the Language . Digital Press. 1984.

The first edition is easier to read; the second describes a more recent
standard. (The differences between the two standards shouldn’t affect

casual programmers.)

o WARE S A, 9 R TR (PRI ZE AR
ANPID i i |
DR A AT A D

A book by Dave Touretsky has also been recommended to me, although I

haven’ t read it, so I can’t say anything about it.

it id s Dave Touretsky
HT—8, AFRMREEE, PrUAGE A
B

Symbols

(]

A symbol is just a string of characters. There are restrictions on what
you can include in a symbol and what the first character can be, but as
long as you stick to letters, digits, and hyphens, you 11 be safe.
(Except that if you use only digits and possibly an initial hyphen,

LISP will think you typed an integer rather than a symbol.) Some

examples of symbols:

P IDGE T o AR DR S P& B B0y AR AESs, P10 B
ot TR k. (RERAR IS ALY, B f DL MERA I LA, LISP
SN T — MEEOU AT 5.) Bl

a
b
cl
foo
bar

baaz—quux—garply

Some things you can do with symbols follow. (Things after a ”>” prompt

are what you type to the LISP interpreter, while other things are what

” ”

the LISP interpreter prints back to you. The is LISP’ s comment

” ”

character: everything from a to the end of line is ignored.)

P R oRIRATA] IS i . (7D RRd R R IR) LISP #y A Z: 18, e i J& LISP
FEDIR A5 UR . 77 J& LISP FIVERERT: 77 Ja AT AR S W 2 o)

> (setq a b) :store a number as the value of a symbol

5)

> a :take the value of a symbol

5)

> (let ((a 6)) a) :bind the value of a symbol temporarily to 6
6

> a ;the value returns to 5 once the let is finished

5

> (+ a 6) :use the value of a symbol as an argument to a
function

11

>b :try to take the value of a symbol which has no
value

Error: Attempt to take the value of the unbound symbol B

There are two special symbols, t and nil. The value of t is defined
always to be t, and the value of nil is defined always to be nil. LISP
uses t and nil to represent true and false. An example of this use is

in the if statement, described more fully later:

AR S, ¢ Fonil ot FMEREE XK t, nil BMEEZEE XN
nil .LISPFH t 1 nil 8% true FI false. LA R A8 FHIXNIIREM if 1B,
S TR0 40 3 B -

> (if t 5 6)

5

> (if nil 5 6)
6

> (if 4 5 6)

5

The last example is odd but correct: nil means false, and anything else
means true. (Unless we have a reason to do otherwise, we use t to mean

true, just for the sake of clarity.)

wJa— M ERRIREE, (HRRAH: nil K false
» HEAERMEAER true.

Chy TACRSS T, AER AT AR R IGO0 R, JATH ¢ AR true. D

Symbols like t and nil are called self-evaluating symbols, because
they evaluate to themselves. There is a whole class of self-evaluating
symbols called keywords; any symbol whose name starts with a colon is a

keyword. (See below for some uses for keywords.) Some examples:

t A nil

EFERIAT SRR BT AT S, BRI 0 B & BT S P4
KT AF—LLE SRR SRS Y. CRe — 20N ik
PR

> :this—is—a-keyword
: THIS—IS—-A-KEYWORD

> :so—is—this
:SO-IS-THIS

> :me—too

:ME-TOO

Numbers

AL

An integer is a string of digits optionally preceded by + or —. A real
number looks like an integer, except that it has a decimal point and
optionally can be written in scientific notation. A rational looks like

two integers with a / between them. LISP supports complex numbers,

which are written #ic(r i) (where r is the real part and i is the

imaginary part). A number is any of the above. Here are some numbers:

BUHIRE R OO, WRERbL + 5 -

ko SCHAMBEBIRMIG, (HREHAT

MR IERTRES R A TGS . A BB RS A R WAl /. LISP
3

FFRHL 5 e (v

i) (r FoR%EHE, 1 R o BLESROAEE. il —

=3 QIER

5

17

—34

+6

3. 1415

1. 722e-15

tc (1. 722e-15 0. 75)

The standard arithmetic functions are all available: +, -, *, /, floor,
ceiling, mod, sin, cos, tan, sqrt, exp, expt, and so forth. All of them
accept any kind of number as an argument. +, —, %, and / return a
number according to type contagion: an integer plus a rational is a
rational, a rational plus a real is a real, and a real plus a complex

is a complex. Here are some examples:

FrAEf v SR B s+, -, %, /, floor, ceiling, mod, sin,
cos, tan,

sqrt, exp, expt

Ao PIATIX LR Bl] IS AR AR S .+, -

i
IR

H

=
7
I

xS

RERMIZEAL: — RO BAOR DA B, — AN B — 4

AL AN A REGE AR W R PR:

> (+ 3 3/4)

15/4

> (exp 1)

2. 7182817

> (exp 3)

20. 085537

> (expt 3 4.2)

100. 90418

> (+567 (89 10))

:type contagion

s ekexe

;exponent with a base other than e

:the fns +—%/ all accept multiple arguments

There is no limit to the absolute value of an integer except the memory

size of your computer. Be warned that computations with bignums (as

large integers are called) can be slow. (So can computations with

rationals, especially compared to the corresponding computations with

small integers or floats.)

xR, ME DRI IS A . ARRBEE S (X

S RIEED TTRES RS

bl
¥ b ia 50

Conses

CIA B BATTR] LATHSAT BRI, JE N HORT T R

A cons is just a two—field record. The fields are called “car” and
“cdr”, for historical reasons. (On the first machine where LISP was
implemented, there were two instructions CAR and CDR which stood for
“contents of address register” and “contents of decrement register”.

Conses were implemented using these two registers.)

cons

A ML TFEIIC . BT R, A B B BRR A
“car”fl7cdr”. (FEEE—GSZHL LISP MIALES -, FJ CAR A1 CDR /K" Hihk 25
RN R TN 355 A7 2RI N 2"« Conses [F1SZH = BAK SEIX AN 29 /588,)

Conses are easy to use:

Conses 1R 7 714 H -

> (cons 4 5) ;Allocate a cons. Set the car to 4 and the cdr
to o.

(4. 5)

> (cons (cons 4 5) 6)

((4 . 5) . 6)

> (car (cons 4 5))

4

> (cdr (cons 4 5))

5

Lists

You can build many structures out of conses. Perhaps the simplest is a
linked list: the car of each cons points to one of the elements of the
list, and the cdr points either to another cons or to nil. You can

create such a linked list with the list fuction:

PRA] LAR)IEE conses Z AMPIEER) o] BE B W] PRI A2 B R : B — cons 1] car $5[H)
ik
FI—ANTEE, cdr $5 17— cons B0 nil. FATOTLIMEH list BEMERER .,

> (list 4 5 6)
(45 6)

Notice that LISP prints linked lists a special way: it omits some of

the periods and parentheses. The rule is: if the cdr of a cons is nil,
LISP doesn’ t bother to print the period or the nil; and if the cdr of
cons A is cons B, then LISP doesn’ t bother to print the period for cons

A or the parentheses for cons B. So:

ity ST R K& LISP

F—FlRe ik (10 75 AT BN 8 A PS8 A B R4 5
B R : W RHEA cons (B cdr & nil , LISP A4THI nil
MBhRIL, Wi

cons A ff] cdr s& cons B, LISP A4TH! cons B [#55 A1 cons A

> (cons 4 nil)
(4)
> (cons 4 (cons 5 6))

(45. 6)
> (cons 4 (cons 5 (cons 6 nil)))

(45 6)

The last example is exactly equivalent to the call (list 4 5 6). Note
that nil now means the list with no elements: the cdr of (a b), a list
with 2 elements, is (b), a list with 1 element; and the cdr of (b), a
list with 1 element, is nil, which therefore must be a list with no

elements.

i — M TR A (List 4 5 6) o IR R

nil FoRBCH LRI

B WEWAICRNEEL (a

b)H, cdr & (), —MEFHRDTLRNEER; B

—IUHRMEEL (b), cdr s nil, U RRE—MNERA TR L.

The car and cdr of nil are defined to be nil.

nil) car M cdr & X Anil,

If you store your list in a variable, you can make it act like a stack:

UERARIEBERAA i AEAZ R, n] LUK A HERORA] «

> (setq a nil)
NIL

> (push 4 a)
(4)

> (push 5 a)

(5 4)

> (pop a)
> a
(4)

> (pop a)

> (pop a)
NIL

NIL

Functions

You saw one example of a function above. Here are some more:

A AT e Lo] 1, XIS L

> (+3456)

arguments

18

>+ (+34) (+ (+45)6))
22

> (defun foo (x y) (+ x y 5))
FOO

> (foo 5 0)

10

:this function takes any number of

:isn’ t prefix notation fun?

:defining a function

:calling a function

> (defun fact (x) ;a recursive function
(if O x0)
(* x (fact (- x 1)))
D)
FACT
> (fact 5)
120
> (defun a (x) if x0) t (b (-x)))) :mutually recursive
functions
A
> (defun b (x) (if O x0) (@ (-x 1)) (a (+ x 1))))
B
> (a b)
T
> (defun bar (x) :a function with multiple statements in
(setg x (% x 3)) :its body — it will return the value
(setq x (/ x 2)) ‘returned by its final statement
(+ x 4))
BAR
> (bar 6)
13

When we defined foo, we gave it two arguments, x and y. Now when we
call foo, we are required to provide exactly two arguments: the first
will become the value of x for the duration of the call to foo, and the
second will become the value of y for the duration of the call. In
LISP, most variables are lexically scoped; that is, if foo calls bar

and bar tries to reference x, bar will not get foo s value for x.

MIRATE SCRRERI I, BOE T IS, x H

vo BUAEMIRATHA foo, FHEE
BHWASE: B—ANE foo BRECHAMRA x

MfE, ARk v 1.

5 LISP v, RHBAFIAR BEH SR, WA foo AT
bar , bar HHARITH T

25 x 951 H, {3 bar 4AF] foo HIH x .

The process of assigning a symbol a value for the duration of some

lexical scope is called binding.

PR R RE T 25— A S IR B I R A PR A SR 5E

You can specify optional arguments for your functions. Any argument

after the symbol &optional is optional:

FATAT LG AR E WIE S KL, (R4 T &optional
LIRS HE RS

> (defun bar (x &optional y) (if y x 0))

BAR

> (defun baaz (&optional (x 3) (z 10)) (+ x z))
BAAZ

> (bar 5)

0

> (bar 5 t)

5

> (baaz 5)

15

> (baaz 5 6)
11

> (baaz)

13

It is legal to call the function bar with either one or two arguments.
If it is called with one argument, x will be bound to the value of that
argument and y will be bound to nil; if it is called with two

arguments, x and y will be bound to the values of the first and second

argument, respectively.

bar bR KL TN 2245 tH— s A2 8. e — S 80, x
R gh

EREXANSHAE L, Moy wE

nils WERAPAZEAME, x My 205980E

B AIH AME .

The function baaz has two optional arguments. It specifies a default
value for each of them: if the caller specifies only one argument, z
will be bound to 10 instead of to nil, and if the caller specifies no

arguments, x will be bound to 3 and z to 10.

baaz

PR ANTIESH B e gt TR AR R 7 —
NSHL 2 290E N 10 1A nil, WERIHMHERAER NS, x S90E8 3,
1M z 2%

EA 10,

You can make your function accept any number of arguments by ending its

argument list with an &rest parameter. LISP will collect all arguments
not otherwise accounted for into a list and bind the &rest parameter to

that list. So:

HESHINVRINRIFBE > &rest

A ATLMERA T s BGE ZAEEEH Z 4.

LISP BT MY NS BCAGE — MERIFIRE R &rest
ZH. T

> (defun foo (x &rest y) y)
FOO

> (foo 3)

NIL

> (foo 4 5 6)

(5 6)

Finally, you can give your function another kind of optional argument
called a keyword argument. The caller can give these arguments in any

order, because they re labelled with keywords.

e, BT DOk s R e — RO S T S BN R S K. TS AT DA
R XS A, RO C Al i B 7 bnos oK

> (defun foo (&key x y) (cons x y))
FOO

> (foo :x 5 :y 3)

(5. 3)

> (foo :y 3 :x 5)

(5. 3)

> (foo :y 3)
(NIL . 3)

> (foo)
(NIL)

An &key parameter can have a default value too:

KU TSR] AT IR A -

> (defun foo (&key (x 5)) x)
FOO

> (foo :x 7)

7

> (foo)

5

Printing

Some functions can cause output. The simplest one is print, which

prints its argument and then returns it.

HELGpR A] DU R A o S i — N 2
print, ‘& LAFTENSEGF Hik Al

eiil.

> (print 3)

3

The first 3 above was printed, the second was returned.

EOGITED 3, RJEIRMIE,

If you want more complicated output, you will need to use format.

Here' s an example:

WMRARFTEE LG 0%, nTRes A
format, iXHAH M|

> (format t “An atom: S %and a list: S %and an integer: "D %"
nil (list 5) 6)

An atom: NIL

and a list: (5)

and an integer: 6

The first argument to format is either t, nil, or a stream. T specifies
output to the terminal. Nil means not to print anything but to return a
string containing the output instead. Streams are general places for
output to go: they can specify a file, or the terminal, or another

program. This handout will not describe streams in any further detail.

H—ANSHETLE t, nil

B — AN t AR B 20 nil WA AT

AT ARG, T ek al o i F T i ad B g 2 e n] L — AR e S A,
o — N, BE AR . XA F AR TR 2 405

The second argument is a formatting template, which is a string

optionally containing formatting directives.

B ASERME R, RS A B 7 R R

All remaining arguments may be referred to by the formatting
directives. LISP will replace the directives with some appropriate
characters based on the arguments to which they refer and then print

the resulting string.

i e Sk S e g . LISP SARYEFORBTS H IS5, K
NETER A, FFRPIGER PR

\\

Format always returns nil unless its first argument is nil, in which

case it prints nothing and returns a string.

W format [FIEE—NSH0E nil
, EIRBPI AR, AT AWAITE, BN
vREIRA nil .

There are three different directives in the above example: ~S, "D, and
“%. The first one accepts any LISP object and is replaced by a printed
representation of that object (the same representation which is
produced by print). The second one accepts only integers. The third one
doesn’ t refer to an argument; it is always replaced by a carriage

return.

BT R rh g = MR R brs: 7S, "D F1 %, AT LISP % 9t H.

¥

FOFHO XA BT EIE (S5 AEH] print 37 BV ARG EAHRD o =4

Another useful directive is ~, which is replaced by a single ~

SRR, BB RAT.

Refer to a LISP manual for (many, many) additional formatting

directives.

LISP Fthrad 7 H'e (RZ, 1R2Z) Mkstbbras.

Forms and the Top—Level Loop

The things which you type to the LISP interpreter are called forms; the
LISP interpreter repeatedly reads a form, evaluates it, and prints the

result. This procedure is called the read—eval-print loop.

A 4N 1] LISP R 53 1092 PG BFA A V8 405 LISP U8 58 8 4 I S 4 1
SEATANT, Ho 4 BATEN R . AN R BERR o S IR AT 4T IV

Some forms will cause errors. After an error, LISP will put you into
the debugger so you can try to figure out what caused the error. LISP
debuggers are all different; but most will respond to the command

"help” or “:help” by giving some form of help.

Kbty R AR R, LISP x5 B ATHE N alas, DU IRAT T th AR i St A
LISP (&Ml as AR 2 2257, AL "help” 8 thelp”dr & it 4y th—
SeiE A

In general, a form is either an atom (for example, a symbol, an
integer, or a string) or a list. If the form is an atom, LISP evaluates
it immediately. Symbols evaluate to their value; integers and strings
evaluate to themselves. If the form is a list, LISP treats its first
element as the name of a function; it evaluates the remaining elements
recursively, and then calls the function with the values of the

remaining elements as arguments.

HWH, MERE AR (B, AR EE AL, R AT R B
IES

WERBEATE AR ST, LISP ALRMETE . A5 b e T, AEA0 v 4F
AT

NENTAS . WREARE—AFIZR, LISPERHE AN nE R 4; EisH
Rt

HaWoos, R e ErE S EoR XA .

For example, if LISP sees the form (+ 3 4), it treats + as the name of
a function. It then evaluates 3 to get 3 and 4 to get 4; finally it
calls + with 3 and 4 as the arguments. The + function returns 7, which

LISP prints.

Biltn, Wk LISP @ERER (+ 3 4), E2ali +
TENREA . RGNS 3 RN R 3, 4 f#

Mol 4s e 3 R4 VE NS HO A+, LISP TEIH +
BRI IR R 7,

The top—level loop provides some other conveniences; one particularly
convenient convenience is the ability to talk about the results of

previously typed forms. LISP always saves its most recent three

results; it stores them as the values of the symbols 3%, %, and sk,

For example:

TR TR T — LEFE A — N5 5 (S K3t 7 gt J2 AR HR LA i A 1)
WRIMEER . LISP B RAF B = EERs ERE I RAF Ak, ol = AN Af
SET, Bl

> kekek

> kekek

> kekek

> kk

Special forms

There are a number of special forms which look like function calls but

aren’ t. These include control constructs such as if statements and do
loops; assignments like setq, setf, push, and pop; definitions such as
defun and defstruct; and binding constructs such as let. (Not all of

these special forms have been mentioned yet. See below.)

AR R A R AR R BOR A, RSN o X B ISR R I E), 4
W if AR do loops; WA{HIEH], U setq,

setf, push Al pop; & X i)

%l defun F1 defstruct; LLK&ZRERIME,

let. CXHEAEKLITA IR

). JRAgkE:. D

One useful special form is the quote form: quote prevents its argument

from being evaluated. For example:

— MR R TE A) 52 quote
: quote HUHHZHUMGRENRS. B

> (setq a 3)
3

> a

3

> (quote a)

> a "a is an abbreviation for (quote a)

Another similar special form is the function form: function causes its

argument to be interpreted as a function rather than being evaluated.

For example:

AR
fuction: function IR AL H 2R — /BT A2
A,

A%

(setq + 3)

> (function +)
#<{Function + @ #x—fbef9de>
> # + ‘# + is an abbreviation for (function +)

#<{Function + @ #x—fbef9de>

The function special form is useful when you want to pass a function as
an argument to another function. See below for some examples of

functions which take functions as arguments.

MIRATTE BN N R BUE IS EAL IR T — A PR BN 2 H 3
function EH). JEl
A LR bR HOKE R EUE A S

Binding

Binding is lexically scoped assignment. It happens to the variables in
a function’ s parameter list whenever the function is called: the formal
parameters are bound to the actual parameters for the duration of the
function call. You can bind variables anywhere in a program with the

let special form, which looks like this:

G AR IR G, BEAEan#-—%E) SR80, et
KT RS EIN AR TS EAI H e& SO R 52 B 240 T L
1r:

FEFFHBEAL R e AL f, WU T T

(let ((varl vall)
(var2 val2)
o)
body)

Let binds varl to vall, var2 to val2, and so forth: then it executes
the statements in its body. The body of a let follows exactly the same

rules that a function body does. Some examples:

let f8 vall 482 2 varl, 8 val2 g3 var2, MIREHE; R EMFETAA
SREA)
TR let MREPARS BREARIHAT N 5E A0 A o 451 0t

> (let ((a 3)) (+al))
4
> (let ((a 2)

(b 3)

(c 0))

(setg ¢ (+ a b))
c)

5

> (setq ¢ 4)

4

> (let ((c 5)) ¢)

5

> C

4

Instead of (let ((a nil) (b nil)) ...), you can write (let (a b) ...).

RETBAH (et (@ b) ...) A& (et ((a nil) (b nil)) ...) o

The vall, val2, etc. inside a let cannot reference the variables varl,

var2, etc. that the let is binding. For example,

vall, val2 2555, 7 let WHEARES|H
varl, var2 2545 let IFEGEMI R T,

fltn (s 2, AT, BEASHZBAG LG IH-—-#E) -

> (let ((x 1)
(y (+x 1))

y)

Error: Attempt to take the value of the unbound symbol X

If the symbol x already has a global value, stranger happenings will

result:

WEARSS x B8AT TR, 77E SR g

> (setq x 7)
7
> (let ((x 1)
(y (+x 1))

y)

The let* special form is just like let except that it allows values to

reference variables defined earlier in the let*. For example,

let* WEAJRMLLT let, (H'E ARTFFIHZBILE lets
rhE AR e . N

> (setq x 7)
7
> (letx ((x 1)
(v +x 1))

y)

The form

{Eaa)

(letx ((x a)
(y b))

is equivalent to

Ehr T

(let ((x a))
(let ((y b))
)

Dynamic Scoping

The let and let* forms provide lexical scoping, which is what you
expect if you re used to programming in C or Pascal. Dynamic scoping is
what you get in BASIC: if you assign a value to a dynamically scoped
variable, every mention of that variable returns that value until you

assign another value to the same variable.

L IRAILE C 2 Pascal TEREFANR, let F1 letx

AR TR L. shas

1 P4 47175 BASTC HLAT I Fh: i S BAT 145 — A B A H A S 718, 8
7

I XA AR B U5 [#R S AR AME, H RIS R — AR T 5 —AME A 1k

In LISP, dynamically scoped variables are called special variables. You
can declare a special variable with the defvar special form. Here are

some examples of lexically and dynamically scoped variables.

F£ LISP w, ZhaSAE A R o bt o kAT LU

special i&H) defvar

& S MR R X AT —)AL R B AR AR R 1K) s A

In this example, the function check-regular references a regular (ie,
lexically scoped) variable. Since check-regular is lexically outside of
the let which binds regular, check-regular returns the variable’s

global value.

LELLURRflth, check-regular BRE5|FH—4 regular
(e —MMACAE O

As i, A check-regular fE4F5E regular 1 let
HMRIRINIAL, check-regular

1 [P A R 4 JR)

> (setq regular 5)

5

> (defun check-regular () regular)
CHECK-REGULAR

> (check-regular)

5

> (let ((regular 6)) (check-regular))
5

In this example, the function check—special references a special (ie,
dynamically scoped) variable. Since the call to check—special is
temporally inside of the let which binds special, check—special returns

the variable’s local value.

FEZXAN T, % check-special 5IH T —4>
Rt BhAERED .

K1t check—special MmN &AL THALEE R et
W&, check—special
IR A AR S 1) J A

> (defvar *special* 5)

SPECIAL

> (defun check-special () *special*)
CHECK-SPECIAL

> (check—special)

5

> (let ((kspecial* 6)) (check—special))

6

By convention, the name of a special variable begins and ends with a *.
Special variables are chiefly used as global variables, since
programmers usually expect lexical scoping for local variables and

dynamic scoping for global variables.

TR, R AR R LA *
THRMEE A Rt T TR, W
R 3 3 YT R SRy A AL B A A ARl A I, 4 R AR A Bl a4 ek

For more information on the difference between lexical and dynamic

scoping, see Common LISP: the Language .

WA B AE N B 2 %2 52)L (Common LISP: the

Language) o

Arrays

The function make—array makes an array. The aref function accesses its
elements. All elements of an array are initially set to nil. For

example:

make—array PREE X—MNE4 . aref
PRECT M BT E . T CREVIG A nil.
il -

> (make-array ’ (3 3))

#2a ((NIL NIL NIL) (NIL NIL NIL) (NIL NIL NIL))

> (aref * 1 1)

NIL

> (make—array 4) :1D arrays don’ t need the extra parens

#(NIL NIL NIL NIL)

Array indices always start at 0.

HAH RGN 0 TG

See below for how to set the elements of an array.

PURTHE i i E— AL o

Strings

A string is a sequence of characters between double quotes. LISP

represents a string as a variable—length array of characters. You can

write a string which contains a double quote by preceding the quote

with a backslash; a double backslash stands for a single backslash. For

example:

FAF AT 5 2)78 o LISP

MR B AR MK P 54 .

FATAT LU — A BRI — X5 5 R R P43 B G S, A AR R R
AN SR B

"abcd” has 4 characters
”"\”” has 1 character

“\\” has 1 character

Here are some functions for dealing with strings:

A7 LR M) DU 3R 1 s

> (concatenate ' string “abcd” “efg”)

”abcdefg”

> (char “abc” 1)

#\b :LISP writes characters preceded by #\
> (aref "abc” 1)

#\b :remember, strings are really arrays

The concatenate function can actually work with any type of sequence:

concatenate PREUR] LA T T F 51

> (concatenate ’string ~ (#\a #\b) ’ (#\c))
” abC ”

> (concatenate " list “abc” “de”)

(#\a #\b #\c #\d #\e)

> (concatenate "vector "#(3 3 3) "#(3 3 3))
#(333333)

Structures

LISP structures are analogous to C structs or Pascal records. Here is

an example:

LISP &5#25LT C g5kl Pasacal 3. W N FT7s:

> (defstruct foo
bar
baaz

quux)

FOO

This example defines a data type called foo which is a structure
containing 3 fields. It also defines 4 functions which operate on this
data type: make—foo, foo—bar, foo-baaz, and foo—quux. The first one
makes a new object of type foo; the others access the fields of an

object of type foo. Here is how to use these functions:

EARPIEX T 4N foo
FIEE R, e AT =AU S .

BB ESLT 4 NRBH T HEHAEIXANE PRI nake—foo, foo-ba, foo-baaz

Fl
foo—quux. HE—ARREHMIIE T —A foo KMMIH A%, WA =ANH T —A
foo RN G o DU A& X 46 pR B FH 74

> (make—fo0)

#s (FOO :BAR NIL :BAAZ NIL :QUUX NIL)
> (make-foo :baaz 3)

#s (FOO :BAR NIL :BAAZ 3 :QUUX NIL)

> (foo—bar *)

NIL

> (foo—baaz *%*)

3

The make—foo function can take a keyword argument for each of the
fields a structure of type foo can have. The field access functions
each take one argument, a structure of type foo, and return the

appropriate field.

meke—foo

BRE T DU foo S5 MR IY 17 BoAE N B 2 8. A BT IR BB A LA
foo KM L5 SHL, IR BRI 1B

See below for how to set the fields of a structure.

LUJE I w2 A S5 1 7 B

Setf

Certain forms in LISP naturally define a memory location. For example,
if the value of x is a structure of type foo, then (foo—bar x) defines
the bar field of the value of x. Or, if the value of y is a one-

dimensional array, (aref y 2) defines the third element of y.

LISP Al iER) IS Tl HARS E X — WA X3k B, Wk x {E 2 foo
e

H—ANE5HK), (foo-bar

x) X x W bar FEIMME. BE, Wy & YERA,

(aref y 2) & Xy M =/ITHR.

The setf special form uses its first argument to define a place in
memory, evaluates its second argument, and stores the resulting value

in the resulting memory location. For example,

setf
EAH TENATHERE N SEoE M 25 = A4 b, IF Halk[H A A7
DR 45 Al . il

> (setq a (make—array 3))
#(NIL NIL NIL)

> (aref a 1)

NIL

> (setf (aref a 1) 3)

3

> a

#(NIL 3 NIL)

> (aref a 1)

3

> (defstruct foo bar)
FOO

> (setq a (make—foo))
#s (FOO :BAR NIL)

> (foo-bar a)

NIL

> (setf (foo-bar a) 3)
3

> a

#s(FOO :BAR 3)

> (foo-bar a)

3

Setf is the only way to set the fields of a structure or the elements

of an array.

setf T4 A I 7 Bl Bal oo IR M — ik

Here are some more examples of setf and related functions.

XHIEA LT set! FAHKBREL w1 o

> (setf a (make—array 1)) :setf on a variable is equivalent to setq
(NIL)

> (push 5 (aref a 1)) :push can act like setf

(5)

> (pop (aref a 1)) SO can pop

5

> (setf (aref a 1) 5)

5

> (incf (aref a 1)) :incf reads from a place, increments,
6 ;and writes back

> (aref a 1)

6

Booleans and Conditionals

LISP uses the self-evaluating symbol nil to mean false. Anything other
than nil means true. Unless we have a reason not to, we usually use the

self-evaluating symbol t to stand for true.

LISP H AT 75 nil KWK false. T nil
ZHMO R E RVEHAREE true.

BRAEA A 2R BRI, AT true
FIbsAE AT TS t.

LISP provides a standard set of logical functions, for example and, or,
and not. The and and or connectives are short—circuiting: and will not
evaluate any arguments to the right of the first one which evaluates to
nil, while or will not evaluate any arguments to the right of the first

one which evaluates to t.

LISP $&fit 7 —MNEHEs S bl 28, B, S s Ak SRR
e
FEIBRIS A nil JEANFHRITA S8 SRR A t R AT A

T 1

LISP also provides several special forms for conditional execution. The
simplest of these is if. The first argument of if determines whether

the second or third argument will be executed:

LISP & A S A il it T JUANRR IR IR f o Bl ife if iR — NS4
RAE T
PATH —BEE =S A

> (if t 5 6)
5

> (if nil 5 6)
6

> (if 4 5 6)
5

If you need to put more than one statement in the then or else clause
of an if statement, you can use the progn special form. Progn executes

each statement in its body, then returns the value of the final one.

WRRTFELE then 5K else Yert i BIL AT IR0, AT LME FIHS BRI)
progn.
Progn

FEE IR AR N IR AT RE— 4), iR [mlin — 4R

> (setq a 7)

7

> (setq b 0)
0
> (setq c 5)
5
> (if O a b)
(progn
(setga (+ b 7))
(setg b (+ ¢ 8)))
(setq b 4))
13

An if statement which lacks either a then or an else clause can be

written using the when or unless special form:

—/NKA else B when WJEH)JR[LAE A when B unless

Iz P

> (when t 3)

3

> (when nil 3)
NIL

> (unless t 3)
NIL

> (unless nil 3)
3

When and unless, unlike if, allow any number of statements in their

bodies. (Eg, (when x a b ¢) is equivalent to (if x (progn a b ¢)).)

5 if AJF, when F1 unless
R RN E TR Z ER) . (1,

(when x a b ¢) 24T (if x (progn a b ¢)))

> (when t
(setq a 5)
(+a6))

11

More complicated conditionals can be defined using the cond special

form, which is equivalent to an if ... else if ... fi construction.

MR ZRPIEATEHIT LA cond
BRI SCSEIL, BT A if ... else
if ... fi &4,

A cond consists of the symbol cond followed by a number of cond
clauses, each of which is a list. The first element of a cond clause is
the condition; the remaining elements (if any) are the action. The cond
form finds the first clause whose condition evaluates to true (ie,
doesn’ t evaluate to nil); it then executes the corresponding action and
returns the resulting value. None of the remaining conditions are
evaluated; nor are any actions except the one corresponding to the

selected condition. For example:

—~ cond HI symbol
g M E AT Sl ik, f— N0 —N
list,

cond

LS AU E RS HERILER (WERAID 28fE. cond iR &
HH AR true

(K190 32, PATH M N A EIFR G R, HERfiAs

BT, BR T IXAWINZ A SZ A HAT . Bl

> (setq a 3)

3

> (cond
((evenp a) a) :if a is even return a
(C a7 (/a?2) celse if a is bigger than 7 return a/2
(Kabs) (—al)) ;else if a is smaller than 5 return a-1
(t 17)) ;else return 17

2

If the action in the selected cond clause is missing, cond returns what

the condition evaluated to:

Ik e 1 SRR W N B4E, cond
IR RIS 1 fifi A &6

> (cond ((+ 3 4)))
7

Here’s a clever little recursive function which uses cond. You might be
interested in trying to prove that it terminates for all integers x at

least 1. (If you succeed, please publish the result.)

XHE A cond

PRSI T ANV RRE. IR AT AT XA UE] e T P 5
x WAL (WEARIREEED T, A&k, D

> (defun hotpo (x steps) -hotpo stands for Half Or Triple Plus One
(cond
((=x 1) steps)
((oddp x) (hotpo (+ 1 (* x 3)) (+ 1 steps)))
(t (hotpo (/ x 2) (+ 1 steps)))))
A
> (hotpo 7 0)
16

The LISP case statement is like a C switch statement:

LISP fJ case iBEA)ZRLT C B9 switch iEH]:

> (setq x 'b)

B
> (case x

(a 5)

((de 7

((b £) 3)

(otherwise 9))
3

The otherwise clause at the end means that if x is not a, b, d, e, or

f, the case statement will return 9.

KK otherwise iEAJEEE x

AN as by ¢, dv es f, caseiBEf)f<sik[A 9,

Iteration

The simplest iteration construct in LISP is loop: a loop construct
repeatedly executes its body until it hits a return special form. For

example,

LISP s faj LA &5 #4072 1oop: loop
SER) I AT B IR AR 2 30A
—ANIRIERER], .

> (setq a 4)
4
> (loop

(setq a (+a 1))

(when > a 7) (return a)))
8
> (loop

(setg a (-a 1))

(when (< a 3) (return)))
NIL

The next simplest is dolist: dolist binds a variable to the elements of

a list in order and stops when it hits the end of the list.

dolist 72 N RMHM: dolist T MAERAMKIKGEE B DRI ICH
L’
FERNIEDR S5 RN E 0

> (dolist (x " (a b c¢)) (print x))
A

B

C

NIL

Dolist always returns nil. Note that the value of x in the above
example was never nil: the NIL below the C was the value that dolist

returned, printed by the read—eval-print loop.

Dolist MJEiR[Flnil. = _EHIPH x
FKIBAL Hynil: CJSIHIM NIL /& dolist
RIENET, E s T 4T ENE IR BT T B

The most complicated iteration primitive is called do. A do statement

looks like this:

BRI IEARRA do. do IBAJIKZREIW T :

> (do ((x 1 (+x 1))
(y 1 (xy2))
(O x5 vy
(print y)
(print *working))
1
WORKING
2
WORKING

4
WORKING
8
WORKING
16
WORKING
32

The first part of a do specifies what variables to bind, what their
initial values are, and how to update them. The second part specifies a
termination condition and a return value. The last part is the body. A
do form binds its variables to their initial values like a let, then
checks the termination condition. As long as the condition is false, it
executes the body repeatedly; when the condition becomes true, it

returns the value of the return—-value form.

do [— D RAe e A, SN E, LA 58 . 58— b2t
ANENFAMERNRIOME . B)G RR R . do iBAIE let —FEHLE AR 46 5E 2I1W)
UH1E,
RIGIRIG Ltk . 40 false I, EEEHATREFA: 2548 true, &
IR [H]

return—-value EA)I{H.

The do* form is to do as let* is to let.

dox 1EH)Z T do Wil let* 2T let.

Non—local Exits

The return special form mentioned in the section on iteration is an
example of a nonlocal return. Another example is the return—from form,

which returns a value from the surrounding function:

A — 1 P EARHI LA renturn 1BA) & — DN EN IR [P RE], F5—A 2
return—from, ‘& MALHEE R ECH IR A5 2 1E .

> (defun foo (x)
(return—from foo 3)
X)

FOO

> (foo 17)

3

Actually, the return—from form can return from any named block —— it’s
just that functions are the only blocks which are named by default. You

can create a named block with the block special form:

SR L, return—from

VAT LUMATAT iy 44 13 Ay Herb iR t— U BRSO T
PREOEIE— [A IS E . JATATELA block

A H CE M iE R

> (block foo
(return—from foo 7)

3)

The return special form can return from any block named nil. Loops are

by default labelled nil, but you can make your own nil-labelled blocks:
return

WA DLMATAT nil dy & s ag ez bl B 00 R IEFA 2 nil /344, 1
AT LA B A9 nil FRid i rg b,

> (block nil

(return 7)

3)

Another form which causes a nonlocal exit is the error form:

%%yﬁﬁﬁﬁﬁﬁﬁﬁﬁenwf%@

> (error ”“This is an error”)

Error: This is an error

The error form applies format to its arguments, then places you in the

debugger.

error WAL E S, ARG HEANTAZS .

Funcall, Apply, and Mapcar

Earlier I promised to give some functions which take functions as

arguments. Here they are:

FOGRR A L] LUK R S E N S RO s 2, e AT AR L

> (funcall # + 3 4)

7

> (apply #+ 3 47 (3 4))

14

> (mapcar # not ’ (t nil t nil t nil))

(NIL T NIL T NIL T)

Funcall calls its first argument on its remaining arguments.

funcall HEMHLESHHHENS —HSHL.

Apply is just like funcall, except that its final argument should be a
list; the elements of that list are treated as if they were additional

arguments to a funcall.

Apply 1 funcall RAHE, Aib'eHiEfE—NSE00 LUE— R EANT)R
H
YE & funcall [N2,

The first argument to mapcar must be a function of one argument; mapcar
applies this function to each element of a list and collects the

results in another list.

mapcar [{155—PMZHLIE DRSS EIN R mapear fEF1R EIENTCHRN

%

PR JPRER IPME S oy — MR .

Funcall and apply are chiefly useful when their first argument is a
variable. For instance, a search engine could take a heuristic function
as a parameter and use funcall or apply to call that function on a
state description. The sorting functions described later use funcall

to call their comparison functions.

Funcall fl apply FEH TH NS 2T mNG. G, MRTIEE -8
K
PREAE NS, RS HIE LV funcall 8¢5 apply.

Mapcar, along with nameless functions (see below), can replace many

loops.

Mapcar BC 4% ORIE 41D, T BARIRZ 634

Lambda

If you just want to create a temporary function and don’t want to

bother giving it a name, lambda is what you need.

R AR SR ARG IR R R RS E A ar s, lambda QRIS

> # (lambda (x) (+ x 3))
(LAMBDA (X) (+ X 3))

> (funcall * 5)

8

The combination of lambda and mapcar can replace many loops. For

example, the following two forms are equivalent:

lambda 1 mapcar (24L&] LUBACIR 2036, B0, @k s a2 S50 i

> (do ((x (1 2345) (cdr x))
(y nil))
((null x) (reverse y))
(push (+ (car x) 2) y))
(34567
> (mapcar # (lambda (x) (+ x 2)) "(1 23 4 5))
(34567

Sorting

LISP provides two primitives for sorting: sort and stable—sort.

LISP $& AP RN LEHE: HEPP AR E HE Y

> (sort 7 (2154 6) #<)
(1245 6)
> (sort " (2154 6) #>)
65421)

The first argument to sort is a list; the second is a comparison
function. The sort function does not guarantee stability: if there are

two elements a and b such that (and (not (< a b)) (not (< b a))), sort

may arrange them in either order. The stable-sort function is exactly
like sort, except that it guarantees that two equivalent elements
appear in the sorted list in the same order that they appeared in the

original list.

sort I —ANSHEE—ADHNE, B oADMK sort AR E
P

AKX EA a f1b BAICE, (and (not (< a b)) (not (< b

a))), sort Al RELrik

EAAALE . stable—sort (RUEHET) 5 sort AEHE, Aib e w2
(K1 TG BRAEHE P 5 (K5 2 (R 55 HE 7 5 412 b (K U7 48 1)

Be careful: sort is allowed to destroy its argument, so if the original
sequence is important to you, make a copy with the copy—-list or

copy—seq

function.

R sort MRESTINEMSEL WERIRG PHIN AR EEE, HIFEH
copy—list
8¢ copy-seq PRELBIEH—EIA,

Equality

LISP has many different ideas of equality. Numerical equality is

denoted by =. Two symbols are eq if and only if they are identical. Two

copies of the same list are not eq, but they are equal.

KA, LISP AR Z AR e BEASE R = A5 2 B AT

A
B T R N1 3 0 T S | T P (S P o g (R L

> (eq 'a ’a)
T

> (eq "a ’'b)
NIL

> (=3 4)
NIL

> (eq (abec) (abe))
NIL

> (equal "(abec) "(abe))
T

> (eql "a " a)

T

> (eql 3 3)

T

The eql predicate is equivalent to eq for symbols and to = for numbers

or the same type:

i eal RIS, EX FRSHORAR, T AR

> (eql 2.0 2)

NIL

> (2.0 2)

T

> (eq 12345678901234567890 12345678901234567890)
NIL

> (= 12345678901234567890 12345678901234567890)

T

> (eql 12345678901234567890 12345678901234567890)
T

The equal predicate is equivalent to eql for symbols and numbers. It is
true for two conses if and only if their cars are equal and their cdrs
are equal. It is true for two structures if and only if the structures

are the same type and their corresponding fields are equal.

equal THEX TR 5 AMEE RS M HAIMA conse
(] car Fl cdr #AHZERS EA]
AIEAEN . 24 HA G AN G5 0 2 [2820 1y HLA% 7 BO A S5 i e AT TR 25

Some Useful List Functions

These functions all manipulate lists.

X8 R R R AR A1 3R

> (append " (1 2 3) (45 6)) :concatenate lists

(123456)

> (reverse " (1 2 3)) :reverse the elements of a list
(321)

> (member "a’ (b dac)) :set membership —— returns the first tail
(A C) ;whose car is the desired element

> (find 'a (b d a ¢)) ;another way to do set membership

A
> (find (@ b) *((a d) (a d e)
(A BDE)

(abde) () :test # subsetp)

:find is more flexible though

> (subsetp "(ab) "(ade)) :set containment
NIL
> (intersection ’(a b ¢) * (b))
(B)

> (union

:set intersection

“(a) 7 (b)) :set union
(A B)

> (set—difference " (a b) ’(a)) :set difference

(B)
Subsetp, intersection, union, and set—-difference all assume that each
argument contains no duplicate elements —— (subsetp " (aa) *(ab b)) is

allowed to fail, for example.

Subsetp, intersection, union fl set—difference & RVF& St & A UL
P
—ltn, (subsetp " (a a) (a b b))rA[lAN fail,

Find, subsetp, intersection, union, and set—-difference can all take a

:test keyword argument:; by default, they all use eql.
Find, subsetp, intersection, union fl set—difference #{ 1] AFESZ— :test
K

TG BOAEOLE, NN,

Getting Started with Emacs

You can use Emacs to edit LISP code: most Emacses are set up to enter
LISP mode automatically when they find a file which ends in . lisp, but

if yours isn’t, you can type M-x lisp-mode.

P n] AAE F Emacs 4 LISP A465: Emaces ZEFT FF. 1isp SCAFI B2 A 8hidk A LISP
B,

AN R BT Emacs BA BIHHEANXARA, AT OB M-x

1isp-mode f§3.

You can run LISP under Emacs, too: make sure that there is a command in
your path called “1isp” which runs your favorite LISP. For example, you

could type

A AT LAFE Emacs N84T LISP: SEMACRTEIRATMA AN BR AR R o] LLgdT—A Y
"LISP"fH A% #ilhn, FATAT LA :

In —s /usr/local/bin/clisp ~/bin/lisp

Then in Emacs type M—x run—lisp. You can send LISP code to the LISP you
just started, and do all sorts of other cool things; for more

information, type C-h m from any buffer which is in LISP mode.

SRJEAE Emacs HHIA M-x

run—lip. FRATTAJELR) LISP ACIX5EHT A LISP AXhS, ML
RSN s /5 LISP B RN IR s A C-h

m 7] A B HE— 25 045 R

Actually, you don’t even need to make a link. Fmacs has a variable

called inferior—lisp—program; so if you add the line

Sty b, BATE R AT B #5H. Emacs 5 — =Y
inferior—-lisp—program;

P EARAT TR LAAE R 1HX AT

(setq inferior—lisp—program ”/usr/local/bin/clisp”)

to your .emacs file, Emacs will know where to find CLISP when

you type M—-x run-lisp.

INEIHCH . emacs AR, Emacs Bt AIELERIIA M—x
run—1isp B ZeMF HEL 4K
CLISP,

